Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nonneman, Jasper

  • Google
  • 2
  • 4
  • 1

Ghent University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Experimental study of a switched reluctance motor stator tooth with slot and end winding coolingcitations
  • 20181D simulations of thermally buffered prismatic batteries through the application of PCMs1citations

Places of action

Chart of shared publication
Paepe, Michel De
2 / 6 shared
Schlimpert, Stephan
1 / 1 shared
Tjollyn, Ilya
2 / 7 shared
Beyne, Wim
1 / 5 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Paepe, Michel De
  • Schlimpert, Stephan
  • Tjollyn, Ilya
  • Beyne, Wim
OrganizationsLocationPeople

document

Experimental study of a switched reluctance motor stator tooth with slot and end winding cooling

  • Paepe, Michel De
  • Schlimpert, Stephan
  • Nonneman, Jasper
  • Tjollyn, Ilya
Abstract

This paper presents an experimental study of direct coil cooling applied to a stator tooth of a switched reluctance motor where a direct contact is realized between the winding and fluid. Experiments were performed with a setup consisting of one tooth of a SRM without rotor, but including stator iron and one preformed winding. Three configurations of the cooling method were investigated: slot cooling, end winding cooling and a combination of the two by pumping an Automatic Transmission Fluid (ATF) over the designated sides of the winding. The setup is equipped with 17 thermocouples integrated within the components to determine the temperatures. Three inlet temperatures (21, 33 and 44°C) and four flow rates (1.5, 2, 3.5 and 5 l/min) of the coolant were tested at four different heat losses in the winding (10, 30, 50 and 70W). The results show that the maximum temperature is always located in the centre of the winding and is the lowest for the combined cooling (73.0°C), followed by the slot cooling (79.7°C) and then by the end winding cooling (91.6°C) for the lowest ATF inlet temperature and the highest heat losses and flow rate. With a determined current density in the range 13.8A/mm² to 19.5 A/mm², all three direct coil cooling methods show a great potential in increasing the power density of electric motors.

Topics
  • density
  • impedance spectroscopy
  • experiment
  • iron
  • current density