Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yvind, Kresten

  • Google
  • 17
  • 52
  • 136

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024InAs(P)/InP QDs as sources of single indistinguishable photons at 1.55 µmcitations
  • 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavity13citations
  • 2024Heterogeneous integration of single InAs/InP quantum dots with the SOI chip using direct bonding3citations
  • 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolasercitations
  • 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolasercitations
  • 2019Doping technologies for InP membranes on silicon for nanolasers4citations
  • 2019Doping technologies for InP membranes on silicon for nanolasers4citations
  • 2018Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip for Low-Power Optical Signal Processing109citations
  • 2016An Ultra-Efficient Nonlinear Platform: AlGaAs-On-Insulatorcitations
  • 2014All-Optical Signal Processing using Silicon Devices2citations
  • 2013Ultrahigh-speed hybrid laser for silicon photonic integrated chipscitations
  • 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguidescitations
  • 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguidescitations
  • 2011Towards quantitative three-dimensional characterisation of InAs quantum dotscitations
  • 2011Active III-V Semiconductor Photonic Crystal Waveguides1citations
  • 2010Enhanced amplified spontaneous emission in III-V semiconductor photonic crystal waveguidescitations
  • 2005Monolithic mode-locked lasers with deeply dry etched Bragg mirrorcitations

Places of action

Chart of shared publication
Ostój-Zięba, Emilia
1 / 1 shared
Sakanas, Aurimas
4 / 4 shared
Holewa, Pawel
1 / 1 shared
Syperek, Marcin
2 / 3 shared
Gregersen, Niels
1 / 21 shared
Wasiluk, Maja
1 / 1 shared
Von Helversen, Martin
1 / 1 shared
Semenova, Elizaveta
12 / 15 shared
Huck, Alexander
1 / 1 shared
Musial, Anna
1 / 1 shared
Heindel, Tobias
1 / 3 shared
Vajner, Daniel A.
1 / 1 shared
Stenger, Nicolas
1 / 14 shared
Casses, Laura
1 / 1 shared
Schröder, Frederik
1 / 1 shared
Yu, Yi
1 / 3 shared
Xiong, Meng
1 / 1 shared
Christiansen, Rasmus Ellebæk
1 / 3 shared
Sigmund, Ole
1 / 47 shared
Moerk, Jesper
7 / 20 shared
Musiał, Anna
1 / 2 shared
Burakowski, Marek
1 / 1 shared
Holewa, Paweł
1 / 1 shared
Mrowiński, Paweł
1 / 1 shared
Sek, Grzegorz
1 / 1 shared
Mathiesen, Kristoffer Skaftved
2 / 3 shared
Mørk, Jesper
3 / 17 shared
Marchevsky, Andrey
2 / 2 shared
Oxenløwe, Leif Katsuo
3 / 7 shared
Hu, Hao
3 / 6 shared
Ottaviano, Luisa
2 / 2 shared
Vukovic, Dragana
2 / 2 shared
Pu, Minhao
3 / 3 shared
Jensen, Asger Sellerup
1 / 1 shared
Ros, Francesco Da
1 / 3 shared
Ding, Yunhong
1 / 1 shared
Ji, Hua
1 / 1 shared
Galili, Michael
1 / 4 shared
Peucheret, Christophe
1 / 5 shared
Park, Gyeong Cheol
1 / 1 shared
Ran, Qijiang
1 / 1 shared
Ek, Sara
4 / 6 shared
Hansen, Per Lunnemann
3 / 4 shared
Chen, Yaohui
3 / 7 shared
Kuznetsova, Nadezda
1 / 2 shared
Stiller, K. M.
1 / 1 shared
Kadkhodazadeh, Shima
1 / 23 shared
Dunin-Borkowski, Rafal E.
1 / 65 shared
Schubert, Martin
3 / 11 shared
Thuvander, M.
1 / 7 shared
Larsson, David
1 / 1 shared
Hvam, Jørn Märcher
1 / 10 shared
Chart of publication period
2024
2019
2018
2016
2014
2013
2012
2011
2010
2005

Co-Authors (by relevance)

  • Ostój-Zięba, Emilia
  • Sakanas, Aurimas
  • Holewa, Pawel
  • Syperek, Marcin
  • Gregersen, Niels
  • Wasiluk, Maja
  • Von Helversen, Martin
  • Semenova, Elizaveta
  • Huck, Alexander
  • Musial, Anna
  • Heindel, Tobias
  • Vajner, Daniel A.
  • Stenger, Nicolas
  • Casses, Laura
  • Schröder, Frederik
  • Yu, Yi
  • Xiong, Meng
  • Christiansen, Rasmus Ellebæk
  • Sigmund, Ole
  • Moerk, Jesper
  • Musiał, Anna
  • Burakowski, Marek
  • Holewa, Paweł
  • Mrowiński, Paweł
  • Sek, Grzegorz
  • Mathiesen, Kristoffer Skaftved
  • Mørk, Jesper
  • Marchevsky, Andrey
  • Oxenløwe, Leif Katsuo
  • Hu, Hao
  • Ottaviano, Luisa
  • Vukovic, Dragana
  • Pu, Minhao
  • Jensen, Asger Sellerup
  • Ros, Francesco Da
  • Ding, Yunhong
  • Ji, Hua
  • Galili, Michael
  • Peucheret, Christophe
  • Park, Gyeong Cheol
  • Ran, Qijiang
  • Ek, Sara
  • Hansen, Per Lunnemann
  • Chen, Yaohui
  • Kuznetsova, Nadezda
  • Stiller, K. M.
  • Kadkhodazadeh, Shima
  • Dunin-Borkowski, Rafal E.
  • Schubert, Martin
  • Thuvander, M.
  • Larsson, David
  • Hvam, Jørn Märcher
OrganizationsLocationPeople

conferencepaper

Towards quantitative three-dimensional characterisation of InAs quantum dots

  • Kuznetsova, Nadezda
  • Stiller, K. M.
  • Yvind, Kresten
  • Semenova, Elizaveta
  • Kadkhodazadeh, Shima
  • Dunin-Borkowski, Rafal E.
  • Schubert, Martin
  • Thuvander, M.
Abstract

InAs quantum dots (QDs) grown on InP or InGaAsP are used for optical communication applications operating in the 1.3 – 1.55 μm wavelength range. It is generally understood that the optical properties of such QDs are highly dependent on their three-dimensional structural and chemical profiles. Whilst conventional transmission electron microscopy (TEM) techniques can be used to study capped QDs in plan-view or cross-sectional geometries, the resulting images can provide ambiguous information about their three-dimensional properties. Here, we describe an approach for investigating the applicability of both high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) tomography and atom probe tomography (APT) to the study of surface and buried InAs/InGaAsP QDs grown by metal organic vapour phase epitaxy (MOVPE). Electron tomography was carried out in an FEI Titan TEM instrument operated at 300 kV. TEM specimens were prepared in plan-view geometry using mechanical grinding, polishing and Ar ion milling. Both original HAADF STEM images and final tomographic reconstruction of surface QDs suggest an elongated hexagonal shape for the bases of the QDs (Figure 1). The elongation direction was determined to be [110], using selected area electron diffraction and atomic force microscopy. The HAADF STEM images also suggest that surface QDs have a double-terraced geometry, with steeper facets around their bases and shallower facets close to their tops. This geometry is consistent with a theoretical model of InAs QDs formed on an InGaAs substrate that is lattice matched to InP [1] shown in Figure 1(b). Despite the large inner detector semi-angle used (approximately 50 mrad), strong diffraction effects were present in the original tilt series of HAADF STEM images, resulting in departure from the projection requirement for electron tomography, which states that the recorded intensity should be a monotonic function of a property of the object [2]. These diffraction effects are likely to be associated with ...

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • thin film
  • electron diffraction
  • atomic force microscopy
  • grinding
  • milling
  • focused ion beam
  • transmission electron microscopy
  • quantum dot
  • drying
  • atom probe tomography
  • polishing
  • III-V semiconductor
  • plasma etching
  • wet etching