People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reijonen, Joni
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2022High-coercivity NdFeB Printed Magnets With Laser Powder Bed Fusion Method
- 2022Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steelcitations
- 2022Laser Powder Bed Fusion Of High Carbon Tool Steels
- 2022Experimental and Calphad Methods for Evaluating Residual Stresses and Solid-State Shrinkage after Solidificationcitations
- 2022Opportunities Of Physics-Based Multi-Scale Modeling Tools In Assessing Intra-Grain Heterogeneities, Polycrystal Properties And Residual Stresses Of AM Metals
- 2021Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticitycitations
- 2021Cross-testing laser powder bed fusion production machines and powders: Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Cross-testing laser powder bed fusion production machines and powderscitations
- 2021Cross-testing laser powder bed fusion production machines and powders:Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Method for embedding components during additive manufacturing of metal parts
- 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2017Feasibility of selective laser melting process in manufacturing of digital spare parts
- 2017Circular Economy Concept In Additive Manufacturing
Places of action
Organizations | Location | People |
---|
document
Circular Economy Concept In Additive Manufacturing
Abstract
Recently, there has been increasing concern about thesustainability of the manufacturing industry, one of themajor consumers of energy and raw materials, andtherefore, a major producer of greenhouse gas emissionsand waste. Additive manufacturing (AM) inherentlygenerates less waste than the conventional manufacturing.In this study, the goal was to apply the concept ofcircular economy into AM, by recovering processsidestreams back to the feedstock material for SelectiveLaser Melting. The objective was to prepare powder from100 % scrap feedstock following two routes: 1) mechanicalmilling of agglomerated residue powder, and 2) gasatomization of solid scrap without extra alloying tocompensate possible alloy losses. The powder propertieswere analysed and test specimens for the determination ofmechanical properties were made from the prepared powdersand commercial reference powder. Conducted test seriesshow that with recycled powders properties fullycomparable to reference can be achieved.