People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Revuelta, Alejandro
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2024Process monitoring by deep neural networks in directed energy deposition : CNN-based detection, segmentation, and statistical analysis of melt poolscitations
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2024Process monitoring by deep neural networks in directed energy depositioncitations
- 2024Process monitoring by deep neural networks in directed energy deposition:CNN-based detection, segmentation, and statistical analysis of melt poolscitations
- 2023SCC behaviour of laser powder bed fused 316L stainless steel in high-temperature water at 288 °Ccitations
- 2022AM NPP - High temperature solution annealing of AM 316L
- 2021Additive manufacturing in nuclear power plants (AM-NPP)
- 2021Method for embedding components during additive manufacturing of metal parts
- 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2018Design and Verification of a Wireless Readout System for Integrated Motor Axle Condition Monitoringcitations
- 2017Soft magnetic alloys for selective laser melting
- 2017Feasibility of selective laser melting process in manufacturing of digital spare parts
- 2016Manufacturing of topology optimized soft magnetic core through 3D printing
- 2016Optimization and simulation of SLM process for high density H13 tool steel partscitations
- 2007High velocity forming of magnesium and titanium sheetscitations
- 2007Comparison of two commercial FE-codes for sheet metal forming
Places of action
Organizations | Location | People |
---|
conferencepaper
Feasibility of selective laser melting process in manufacturing of digital spare parts
Abstract
Digital spare parts is a concept where spare parts andall the related information are transferred and storeddigitally. A physical copy of the spare part will be 3Dprinted only when they are needed and usually in alocation close to end user. Feasibility of selectivelaser melting (SLM) process in manufacturing ofindustrial spare parts was demonstrated. Spare partsselected for the demonstrations were originated fromindustry and they were designed to be manufactured usingtraditional manufacturing methods such as casting andmachining. Materials for the SLM process (e.g. H13 toolsteel and Inconel 718) were selected so that theycorrespond with the original materials to meet thecritical design aspects. Process parameters weredetermined experimentally using Design of Experimentapproach where the effect of process parameters on partporosity was evaluated. The parts were manufactured andfinalized by heat treating and machining. In addition,material properties (microstructure, mechanicalproperties) were determined and the overall performanceand profitability (e.g. manufacturing / life cycle costs,delivery time) of the parts were assessed. Achievedresults showed SLM process to be a relevant option inmanufacturing of spare parts.