Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garcia-Godoy, A.

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Human root dentin microhardness and degradation by triple antibiotic paste and calcium hydroxide.citations

Places of action

Chart of shared publication
Jr, Boj
1 / 1 shared
Requena, A.
1 / 2 shared
Cortés, O.
1 / 1 shared
Jm, Bolarin
1 / 2 shared
Gúzman, S.
1 / 1 shared
Garcia-Godoy, F.
1 / 9 shared
Caccia, M.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jr, Boj
  • Requena, A.
  • Cortés, O.
  • Jm, Bolarin
  • Gúzman, S.
  • Garcia-Godoy, F.
  • Caccia, M.
OrganizationsLocationPeople

article

Human root dentin microhardness and degradation by triple antibiotic paste and calcium hydroxide.

  • Jr, Boj
  • Requena, A.
  • Garcia-Godoy, A.
  • Cortés, O.
  • Jm, Bolarin
  • Gúzman, S.
  • Garcia-Godoy, F.
  • Caccia, M.
Abstract

<h4>Purpose</h4>To investigate and compare the effects of the two widely used regenerative endodontics medicaments: Triple antibiotic paste (ciprofloxacine-metronidazole-clindamycin) and calcium hydroxide on the microhardness and degradation of human root dentin.<h4>Methods</h4>Following ethical approval and subject consent to use teeth in this research study, 60 singled-rooted permanent human teeth were randomly divided into six groups:(1) Tri-antibiotic paste with distilled water, or with (2) propylene glycol, (3) calcium hydroxide with distilled water, (4) calcium hydroxide propylene glycol, (5) untreated extracted teeth as negative controls, or (6) teeth instrumented and filled with calcium hydroxide or tri-antibiotic paste as positive controls. The microhardness tests were conducted after 1 and 2 months of exposure to the medicaments using a Vickers microhardness tester. Raman spectroscopy and energy dispersive x-ray spectroscopy were used to evaluate the chemistry and structure of the root dentin.<h4>Results</h4>There were differences in the dentin microhardness following treatment with the medicaments or controls (P< 0.05). The time of root dentin exposure to the medicaments was similar (P> 0.05). The root dentin microhardness was lower in the teeth treated with the triple antibiotic paste or calcium hydroxide when combined with propylene glycol. The root dentin collagen in these treated teeth were also significantly degraded when viewed with Raman spectroscopy and energy dispersive x-ray spectroscopy, whereas the inorganic phase (dentin) remained unaltered. Samples exposed to the antimicrobial agents with water as a vehicle exhibited stronger microhardness and less degradation.<h4>Clinical significance</h4>These ex vivo results suggest that the triple antibiotic paste and calcium hydroxide should be used with propylene glycol if a fast diffusion is desired or with water to avoid degrading the collagen and weakening the microhardness of the teeth. Clinical trials are needed of new formulations of medicaments with propylene glycol to disinfect teeth for regenerative endodontic procedures, to help strengthen the teeth to prevent the loss of children's permanent immature teeth by fracture following caries or trauma.

Topics
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • Calcium
  • Raman spectroscopy
  • X-ray spectroscopy