Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Helmons, Rudy

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Rheology of Flocculated Suspension in Turbidity Currentscitations

Places of action

Chart of shared publication
Chassagne, Claire
1 / 12 shared
Shakeel, Ahmad
1 / 16 shared
Kirichek, Alex
1 / 18 shared
Ali, W.
1 / 7 shared
Enthoven, D. H. B.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Chassagne, Claire
  • Shakeel, Ahmad
  • Kirichek, Alex
  • Ali, W.
  • Enthoven, D. H. B.
OrganizationsLocationPeople

document

Rheology of Flocculated Suspension in Turbidity Currents

  • Chassagne, Claire
  • Shakeel, Ahmad
  • Kirichek, Alex
  • Helmons, Rudy
  • Ali, W.
  • Enthoven, D. H. B.
Abstract

Turbidity currents are generated as a result of various processes such as dredging and deep-sea mining. In this work, we generate a turbidity current in a lock exchange setup [1] by using 100 g/l illite, as shown in figure 1. Two different flocculant dosages (0.25 mg/g &amp; 0.75 mg/g of clay) were used with this illite. The material was mixed in the mixing section of the lock exchange before the lock gate was opened. Experiments were done both in fresh and salt water. The samples were collected after the end of the experiment, and their rheological properties were measured using a HAAKE MARS I rheometer (Thermo Scientific, Germany). Rheological studies were carried out using Couette geometry with a gap of 1mm. The sample was gently stirred before rheological measurements.<br/><br/>Higher yield stress values were observed in freshwater experiments compared to saltwater experiments, which can be attributed to a larger floc size in freshwater. In addition, the structural recovery of the flocs was also found to be higher in freshwater than in salt water.

Topics
  • experiment