Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliver, S.

  • Google
  • 2
  • 6
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Measurements of Stress During Thermal Shock in Clad Reactor Pressure Vessel Material Using Time-resolved In-situ Synchrotron X-ray Diffractioncitations
  • 2010Herschel photometric observations of the nearby low metallicity irregular galaxy NGC 682249citations

Places of action

Chart of shared publication
Pavier, M.
1 / 1 shared
Reinhard, Christina
1 / 30 shared
Simpson, C.
1 / 8 shared
Collins, D.
1 / 3 shared
James, A.
1 / 2 shared
Mostafavi, M.
1 / 26 shared
Chart of publication period
2018
2010

Co-Authors (by relevance)

  • Pavier, M.
  • Reinhard, Christina
  • Simpson, C.
  • Collins, D.
  • James, A.
  • Mostafavi, M.
OrganizationsLocationPeople

document

Measurements of Stress During Thermal Shock in Clad Reactor Pressure Vessel Material Using Time-resolved In-situ Synchrotron X-ray Diffraction

  • Pavier, M.
  • Reinhard, Christina
  • Simpson, C.
  • Collins, D.
  • James, A.
  • Mostafavi, M.
  • Oliver, S.
Abstract

Nuclear reactor pressure vessels must be able to withstand thermal shock due to emergency cooling during a loss of coolant accident. Demonstrating structural integrity during thermal shock is difficult due to the complex interaction between thermal stress, residual stress, and stress caused by internal pressure.<br/>Finite element and analytic approaches exist to calculate the combined stress, but validation is limited. This study describes an experiment which aims to measure stress in a slice of clad reactor pressure vessel during thermal shock using time-resolved synchrotron X-ray diffraction. A test rig was designed to subject specimens to thermal shock, whilst simultaneously enabling synchrotron X-ray diffraction measurements of strain. The specimens were extracted from a<br/>block of SA508 Grade 4N reactor pressure vessel steel clad with Alloy 82 nickel-base alloy. Surface cracks were machined in the cladding. Electric heaters heat the specimens to 350°C and then the surface of the cladding is quenched in a bath of cold water, representing thermal shock. Six specimens were subjected to<br/>thermal shock on beamline I12 at Diamond Light Source, the UK’s national synchrotron X-ray facility. Time-resolved strain was measured during thermal shock at a single point close to the crack tip at a sample rate of 30 Hz. Hence, stress intensity factor vs time was calculated assuming K-controlled near-tip stress fields. This work describes the experimental method and presents some key results from a preliminary analysis of the data.

Topics
  • impedance spectroscopy
  • surface
  • nickel
  • x-ray diffraction
  • experiment
  • crack
  • steel