People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliver, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Measurements of Stress During Thermal Shock in Clad Reactor Pressure Vessel Material Using Time-resolved In-situ Synchrotron X-ray Diffraction
Abstract
Nuclear reactor pressure vessels must be able to withstand thermal shock due to emergency cooling during a loss of coolant accident. Demonstrating structural integrity during thermal shock is difficult due to the complex interaction between thermal stress, residual stress, and stress caused by internal pressure.<br/>Finite element and analytic approaches exist to calculate the combined stress, but validation is limited. This study describes an experiment which aims to measure stress in a slice of clad reactor pressure vessel during thermal shock using time-resolved synchrotron X-ray diffraction. A test rig was designed to subject specimens to thermal shock, whilst simultaneously enabling synchrotron X-ray diffraction measurements of strain. The specimens were extracted from a<br/>block of SA508 Grade 4N reactor pressure vessel steel clad with Alloy 82 nickel-base alloy. Surface cracks were machined in the cladding. Electric heaters heat the specimens to 350°C and then the surface of the cladding is quenched in a bath of cold water, representing thermal shock. Six specimens were subjected to<br/>thermal shock on beamline I12 at Diamond Light Source, the UK’s national synchrotron X-ray facility. Time-resolved strain was measured during thermal shock at a single point close to the crack tip at a sample rate of 30 Hz. Hence, stress intensity factor vs time was calculated assuming K-controlled near-tip stress fields. This work describes the experimental method and presents some key results from a preliminary analysis of the data.