People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lebental, Bérengère
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensorcitations
- 2022Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Reviewcitations
- 2022Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubescitations
- 2019Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regenerationcitations
- 2018Oxidation-based continuous laser writing in vertical nano-crystalline graphite thin films
- 2018A graphene-based non-volatile memory
- 2017Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses
- 2016Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Filmscitations
- 2016Nanosensors for sustainable cities - From fundamentals to deployments
- 2016Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulsescitations
- 2015A graphene-based non-volatile memory
- 2014A Novel Weigh-In Motion Sensor Using An Asphalt-Embedded Thin Film of Graphene-On-Clay and Carbon-Nanotubes
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014Nanosecond-laser-induced graphitization and amorphization of thin nano-crystalline graphite films
- 2012Carbon nanotubes and graphene-based microsonar for embedded monitoring of microporosity
- 2012Visco-acoustic modelling of a vibrating plate interacting with water confined in a domain of micrometric sizecitations
- 2011Capacitive ultrasonic micro-transducer made of carbon nanotubes: prospects for the in-situ embedded non-destructive testing of durability in cementitious materialscitations
- 2011Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineeringcitations
- 2011Nanosensors for nanoscale structural health monitoring in civil engineering: new insight on carbon nanotubes devices
- 2010Instrumentation of cementitious materials by embedded ultrasonic micro-transducers made of carbone nanotubes : prospects for in-situ non-destructive testing of durability
- 2009In-situ non destructive testing of cementitous materials via embedded ultrasonic transducers made up of carbon nanotubes.
- 2009Carbon nanotubes based ultrasonic transducer: realization process, morphological and mechanical properties
Places of action
Organizations | Location | People |
---|
conferencepaper
Carbon nanotubes and graphene-based microsonar for embedded monitoring of microporosity
Abstract
Nanoporosities play a most significant role in the durability of cementitious materials, so that nanoscale features are a promising target for SHM. However, to this day, no sensor features the resolution required to investigate non-destructively these nanofeatures. To fill in this loophole, we are devising a SHM-targeted, carbon nanotubes and graphene based capacitive ultrasonic nanotransducer for microporosity assessment in concrete. In this paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated ultra-thin graphene and single-walled carbon nanotubes membranes. A breakthrough laser vibrometry experiment shows that the membranes can feature above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz. A detailed numerical model of the nanotransducer shows that upon embedding in a cementitious material it could determine the volume and content of the porosity in its vicinity. Such information would be invaluable in the evaluation of structural durability.