People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lebental, Bérengère
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensorcitations
- 2022Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Reviewcitations
- 2022Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubescitations
- 2019Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regenerationcitations
- 2018Oxidation-based continuous laser writing in vertical nano-crystalline graphite thin films
- 2018A graphene-based non-volatile memory
- 2017Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses
- 2016Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Filmscitations
- 2016Nanosensors for sustainable cities - From fundamentals to deployments
- 2016Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulsescitations
- 2015A graphene-based non-volatile memory
- 2014A Novel Weigh-In Motion Sensor Using An Asphalt-Embedded Thin Film of Graphene-On-Clay and Carbon-Nanotubes
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014An Innovative Nanosensor for Weigh-In-Motion Applications
- 2014Nanosecond-laser-induced graphitization and amorphization of thin nano-crystalline graphite films
- 2012Carbon nanotubes and graphene-based microsonar for embedded monitoring of microporosity
- 2012Visco-acoustic modelling of a vibrating plate interacting with water confined in a domain of micrometric sizecitations
- 2011Capacitive ultrasonic micro-transducer made of carbon nanotubes: prospects for the in-situ embedded non-destructive testing of durability in cementitious materialscitations
- 2011Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineeringcitations
- 2011Nanosensors for nanoscale structural health monitoring in civil engineering: new insight on carbon nanotubes devices
- 2010Instrumentation of cementitious materials by embedded ultrasonic micro-transducers made of carbone nanotubes : prospects for in-situ non-destructive testing of durability
- 2009In-situ non destructive testing of cementitous materials via embedded ultrasonic transducers made up of carbon nanotubes.
- 2009Carbon nanotubes based ultrasonic transducer: realization process, morphological and mechanical properties
Places of action
Organizations | Location | People |
---|
thesis
Instrumentation of cementitious materials by embedded ultrasonic micro-transducers made of carbone nanotubes : prospects for in-situ non-destructive testing of durability
Abstract
In-situ non-destructive testing of durability in cementitious materials is essential to the early prediction and prevention of structural failures. Whereas degradations in cementitious materials, and henceforth durability loss, are brought about and controlled by the characteristics and evolutions of microporosity, there isn't to our knowledge any method for the in-situ non-destructive testing of microporosity itself. To evaluate in-situ the durability of cementitious materials, we put forward an innovative concept based on in-situ instrumentation of their microstructure. Individual micropores are to be probed by high-frequency ultrasonic waves generated and detected by capacitive ultrasonic microtransducers (μ-cMUT) embedded in large number within the material. The vibrating plate of the μ-cMUT devices is to be made of a thin layer of densely aligned single-walled carbon nanotubes, in order for the devices to satisfy the applicative and technological requirements. Relevance of this instrumentation method has been studied : we have used an elasto-acoustical model to describe the interaction between the vibrating plate of a μ-cMUT device and the fluid (water or air) filling a pore of micrometric size. The specificity of this model lies in the integration of fluid viscosity. It has required us to develop ad-hoc solving techniques. We have found out numerically that in this problem dissipation leads to a decrease in resonance frequency compared to non-visquous acoustics. The boundary layer is large compared to the domain size. The vibration amplitudes of the plate are very sensitive to pore content and to water-filled pore geometry. We have deduced from these results that the μ-cMUT devices we envision may be relevant to study hydration and to monitor degradations in cementitious materials. Feasibility of a high-frequency, nanotubes-based μ-cMUT device operating in water or air has also be evaluated : using first a dielectrophoretic deposition technique, we have made thin, dense membranes of well-aligned nanotubes. One of our deposition reaches mono-layer thickness, which is remarkable for dielectrophoretic depositions. We have suspended the nanotubes, thus obtaining long and rigid membranes. They are very thin and have a high form factor compared to state-of-the-art cMUT devices. Finally, we have used laser vibrometry to observe membrane vibrations. Membrane vibration amplitudes reach 5 nm at low frequency. As far as we know, it is the first time vibrations of carbon nanotubes have been successfully observed with laser vibrometry. These results prove that we have overcome one of the most significant technological bottle-neck of the whole feasibility study. Moreover, they indicate short-term feasibility of air microdetectors that could be valuably employed to monitor gaseous microporosity in cementitious materials. By associating a numerical study on relevance and a technological study on feasibility, this work contributes significantly to the development of a new durability monitoring method for cementitious materials. Central to this method is the use of a large number of embedded microsensors integrating nanotechnologies