Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fz, Cui

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012[Promoting of angiogenesis and osteogenesis in radial critical bone defect regions of rabbits with nano-hydroxyapatite/collagen/PLA scaffolds plus endothelial progenitor cells].citations

Places of action

Chart of shared publication
Ah, Hao
1 / 1 shared
Dj, Wu
1 / 1 shared
Sz, Ma
1 / 1 shared
Zhang, C.
1 / 18 shared
Qiao, Y.
1 / 1 shared
Jl, Liu
1 / 1 shared
Cj, Zhou
1 / 1 shared
Cz, Gao
1 / 1 shared
Xw, Wang
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Ah, Hao
  • Dj, Wu
  • Sz, Ma
  • Zhang, C.
  • Qiao, Y.
  • Jl, Liu
  • Cj, Zhou
  • Cz, Gao
  • Xw, Wang
OrganizationsLocationPeople

article

[Promoting of angiogenesis and osteogenesis in radial critical bone defect regions of rabbits with nano-hydroxyapatite/collagen/PLA scaffolds plus endothelial progenitor cells].

  • Ah, Hao
  • Dj, Wu
  • Sz, Ma
  • Zhang, C.
  • Qiao, Y.
  • Jl, Liu
  • Cj, Zhou
  • Cz, Gao
  • Xw, Wang
  • Fz, Cui
Abstract

<h4>Objective</h4>To explore the roles of nano-hydroxyapatite/collagen/PLA (nHAC/PLA) plus endothelial progenitor cells (EPCs) in repairing segmental bone defects of rabbit radius and enhancing angiogenesis and new bone formation.<h4>Methods</h4>EPCs isolated from New Zealand white rabbit bone marrow were cultured, identified and seeded into nHAC/PLA scaffolds. And the growth of EPCs in scaffolds was observed under scanning electron microscopy (SEM). Thirty-six were randomly divided into 3 groups to establish segmental bone defect models in radii. Two groups were implanted with EPCs/scaffolds constructs (group A, n = 16) and scaffolds alone (group B, n = 16) respectively. The remaining four rabbits were used as negative control (group C) and nothing was implanted. Animals were sacrificed at different timepoints and radii harvested to undergo radiological examination, histological examination and microvessle density test.<h4>Results</h4>These cells isolated from bone marrow were confirmed as EPCs. SEM showed that EPCs attached to the nHAC/PLA scaffolds, grew and proliferated well. Animal experiments revealed that radiological scores (5w: 2.25 ± 0.50 vs 1.00 ± 0.00; 10w: 2.75 ± 0.50 vs 1.75 ± 0.50; 15w: 4.25 ± 0.50 vs 3.0 ± 0.0; each P < 0.05), percentage of new bone formation area in bone defect regions (5w: 29.0% ± 3.5% vs 8.1% ± 0.8%; 10w: 63.4% ± 5.5% vs 16.6% ± 1.3%; 15w: 96.0% ± 4.3% vs 34.0% ± 6.6%; each P < 0.05) and microvessel density (2w: 13.5 ± 0.9 vs 4.3 ± 1.0; 5w:9.8 ± 0.7 vs 4.8 ± 0.3; 10w: 7.0 ± 0.4 vs 4.5 ± 0.4; each P < 0.05) in group A were significantly higher than those in group B. No new bone formation occurred in group C.<h4>Conclusion</h4>The composite structure of EPCs-nHAC/PLA can enhance angiogenesis and new bone formation in segmental bone defects in rabbit radii. It may become a potential candidate of promoting revascularization of tissue engineering bone and repairing large bone defects.

Topics
  • density
  • scanning electron microscopy
  • experiment
  • composite
  • defect