Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sahoo, S.

  • Google
  • 2
  • 46
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Multifunctional Alternating “Bitter-Sweet” Macromolecular Architecture9citations
  • 2021Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basinscitations

Places of action

Chart of shared publication
Mukhopadhyay, B.
1 / 2 shared
Maiti, S.
1 / 7 shared
Pan, S.
1 / 3 shared
De, P.
1 / 1 shared
Tecilla, P.
1 / 1 shared
Paul, S.
1 / 17 shared
Das, S.
1 / 43 shared
Pal, D.
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Mukhopadhyay, B.
  • Maiti, S.
  • Pan, S.
  • De, P.
  • Tecilla, P.
  • Paul, S.
  • Das, S.
  • Pal, D.
OrganizationsLocationPeople

article

Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins

  • Marín-Moreno, H.
  • Bayrakci, G.
  • Elger, J.
  • Minshull, T. A.
  • Provenzano, G.
  • Macdonald, C.
  • Schramm, B.
  • James, R. H.
  • Henstock, T. J.
  • Roche, B.
  • Bull, J. M.
  • Callow, B.
  • Jedari-Eyvazi, F.
  • Lavayssière, A.
  • North, L.
  • Best, A. I.
  • Deusner, C.
  • Li, Jingbo
  • Lichtschlag, A.
  • Gehrmann, R.
  • Kossel, E.
  • Haeckel, M.
  • Parkes, L.
  • Yilo, N.
  • Falcon-Suarez, I. H.
  • Connelly, D. P.
  • Chen, B.
  • Böttner, Christoph
  • Matter, J. M.
  • Waage, M.
  • Dean, M.
  • Robinson, A. H.
  • Berndt, C.
  • Karstens, J.
  • Saleem, U.
  • Bünz, S.
  • Chapman, M.
  • Reinardy, B.
  • Sahoo, S.
Abstract

<p>Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO<sub>2</sub>) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO<sub>2</sub> subsurface storage operations.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • experiment