People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elwenspoek, Michael Curt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2009Characterization of MEMS-on-tube assembly: reflow bonding of borosilicate glass (Duran ®) tubes to silicon substratescitations
- 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithographycitations
- 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
- 2005Growth and surface characterization of piezoelectric AlN thin films on silicon (100) and (110) substratescitations
- 2005Multifunctional tool for expanding afm-based applicationscitations
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2003Wet anisotropic etching for fluidic 1d nanochannelscitations
- 2002Wet anisotropic etching for fluidic 1D nanochannels
- 2002Fabrication and characterization of MEMS based wafer-scale palladium-silver alloy membranes for hydrogen separation and hydrogenation/dehydrogenation reactionscitations
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensorscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2001Selective Wafer Bonding by Surface Roughness Controlcitations
- 2000Wet and dry etching techniques for the release of sub-micrometre perforated membranescitations
- 2000High resolution powder blast micromachiningcitations
- 2000Mask materials for powder blastingcitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
document
Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
Abstract
A new nanofabrication scheme is presented to form stamps useful in thermal nanoimprint lithography (T-NIL). The stamp is created in <110> single crystalline silicon using a full wet etching procedure including local oxidation of silicon (LOCOS)and employing an adapted edge lithography technique on top of conventional photolithography. Ridges down to 10 nm in width have been produced. The silicon ridges have no inbuilt stress and are therefore less fragile than previously fabricated oxide ridges. The ridge sample is used as a template in T-NIL and a full 100 mm wafer size imprint has been successfully carried out in both polymethylmethacrylate (PMMA) and mr-I 7020E polymer. Moreover, the imprinted pattern in PMMA is subsequently transferred into a device wafer