People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Loendersloot, Richard
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (53/53 displayed)
- 2023Theoretical and experimental investigations on control parameters of piezo-based vibro-acoustic modulation health monitoring of contact acoustic nonlinearity in a sandwich beamcitations
- 2023Impact Damage Identification on Composite Structures
- 2022Dynamics-based impact identification method for composite structures
- 2021Numerical Modelling of Stochastic Fatigue Damage Accumulation in Thick Compositescitations
- 2020Ultrasonic inline inspection of a cement-based drinking water pipelinecitations
- 2019Fatigue Damage Identification and Remaining Useful Life Estimation of Composite Structures using Piezo Wafer Active Transducerscitations
- 2019Towards the development of a hybrid methodology of head checks in railway infrastructure
- 2018A Labview/Arduino Measurement System for Shape Memory Alloy Wirescitations
- 2018Acousto-Ultrasonic Damage Monitoring in a Thick Composite Beam for Wind Turbine Applications
- 2018The Detection of Fatigue Damage Accumulation in a Thick Composite Beam Using Acousto Ultrasonics
- 2017Modal strain energy-based structural health monitoring validation on rib stiffened composite panels
- 2016Modal Strain Energy Based Structural Health Monitoring on Rib Stiffened Composite Panels
- 2016Monitoring dynamic stiffness that predicts concrete structure degradation
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approachcitations
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach
- 2015Damage identification in composite panels using guided waves
- 2015Experimental evaluation of vibration-based damage identification methods on a composite aircraft structure with internallymounted piezo diaphragm sensorscitations
- 2015Damage Identification in Composite Panels - Methodology and Visualisationcitations
- 2015Damage identification in composite panelscitations
- 2014Aligning PHM, SHM and CBM by understanding the physical system failure behaviour
- 2013Engineers in a flap over rotor blades
- 2013Development of a Damage Quantification Model for Composite Skin-Stiffener Structures
- 2012Smart actuation for helicopter rotorbladescitations
- 2011Dynamic characterisation of a damaged composite structure with stiffeners employing fibre bragg gratings
- 2011Vibration based structural health monitoring and the modal strain energy damage index algorithm applied to a composite T-beamcitations
- 2011Development of a Damage Quantification Model for Composite Skin-Stiffener Structures
- 2010Development of a multigrid finite difference solver for benchmark permeability analysis
- 2009Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method
- 2008Transverse permeability of woven fabrics (CD-rom)
- 2008Permeability Prediction Using a Multigrid Method (CD-rom)
- 2006Experimental verification of out-of-plane permeability : powerpoint presentation
- 2006A permeability prediction for non-crimp fabrics
- 2006Experimental investigation of the compressibility and permeability of fabric reinforcements : abstract
- 2006Experimental verification of out-of-plane permeability
- 2005A permeability prediction for non-crimp fabrics
- 2005Forming simulation of febre reinforced composites
- 2005Comparison of Permeability Experiments and Explanations of Experimental Scatter based on Geometric Models
- 2005Drape simulation of non-crimp fabrics
- 2004Multigrid/Network approach based permeability prediction
- 2004Permeability prediction of non-crimp fabrics based on a geometric model
- 2004Permeability Experiments: Design, development and methodology of a resin transfer moulding measuring device [Abstract]
- 2004A permeability prediction for (Un)Sheared non-crimp fabrics
- 2003Permeability Prediction of Non-Crimp Fabrics Based on a Geometric Model
- 2003Architecture and permeability of sheared charbon firbre-crimp fabrics
- 2003Quarterly Progress Report UT-NLR RTM project
- 2003Appendix II: Permeability, drapeability and compressibility - Three Interrelated Properties
- 2003Geometry and permeability of non-crimp fabrics
- 2003Permeability prediction of a single layer non-crimp fabric
- 2003Material characterisation for finite element simulations of draping with non-crimp fabrics
- 2002A least squares approximation of annular flow
- 2002Through-thickness permeability measurements of fibre reinforcements
- 2002Definition o developed RVE (unit cell) models
- 2001Resin transfer moulding of high performance composites
Places of action
Organizations | Location | People |
---|
document
Dynamics-based impact identification method for composite structures
Abstract
Modern aircraft design acknowledges integrity, superior strength-to-weight ratio, and safety as critical priorities, which has led to the development of monitoring and maintenance techniques for composite structures. However, composite materials pose the risk of introducing damage that cannot be identified visually, namely barely visible impact damage (BVID). If not detected and repaired in time, damage to the structure can compromise its performance and integrity. Therefore, structural health monitoring (SHM) is an emerging technology that can enhance BVID detection in composite structures. Using ultrasonic waves to locate and characterize an impacted region in composite materials is one of the most promising SHM techniques for quantitative impact identification. Although previous studies use guided waves to assess impact in composite materials, few have addressed inservice inspection, and still, few have attempted to quantify impact severity information from the measured signals to full-scale engineering structures. The present investigation addresses these challenges by developing measures of impact identification based on features extracted from ultrasonic waves. Hence, the research aims to develop a monitoring method using combined sensing technologies to gather data from the system and then translate it into predictions about its health. It requires research across multiple disciplines, such as signal processing, data analysis, damage modeling, dynamics, and sensing technologies. This work proposes to combine the building block (B.B.) approach and the design of experiments (DOE) for guided wave-based structural health monitoring (GWSHM). This practical and systematic approach minimizes the number of tests needed for realistic and large structures by building data from lower-level to higher-level systems. Researchers have conducted lowenergy impact tests on a square (1x1m) aluminum and composite plates in the current research phase. Several sensor signal features and the effect of signal response for various energy levels have been examined using the impact response data generated from three different sensor types: Fiber Bragg Grating (FBG), Piezoelectric Patch Transducer (PZT), and Optical Acoustic Emission (OptimAE). Therefore, the present work compares the performance and reliability of FBGs and OptimAE sensors using PZT-based sensors as a reference. In addition, this study describes a systematic experimental approach and analyzes preliminary results over a range of energy levels<br/>below the damage onset. The results showed that the distance from sensors and the directivity effect (for FBG) affect the sensitivity and signal strength. Furthermore, considering the requirements of SHM sensors, the performance also varies with different sensing technologies. In the next stage, SHM analysis will address the effect of structural elements with added complexity (i.e., stiffeners and variable thickness).