People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valtonen, Kati
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (57/57 displayed)
- 2024Comparison of abrasion wear testing to an in-service feed hopper wear case
- 2023Enhancing the cavitation erosion resistance of AISI 420-type stainless steel with quenching and partitioningcitations
- 2023History of Tribology in Finland 1881–2023 and the Finnish Society for Tribology 1977-2023citations
- 2023High-stress abrasive wear performance of medium-carbon direct-quenched and partitioned, carbide-free bainitic, and martensitic steelscitations
- 2023History of Tribology in Finland 1881 – 2023 and the Finnish Society for Tribology 1977 - 2023citations
- 2022Influence of process parameters on the particle–matrix interaction of WC-Co metal matrix composites produced by laser-directed energy depositioncitations
- 2022Influence of process parameters on the particle–matrix interaction of WC-Co metal matrix composites produced by laser-directed energy depositioncitations
- 2022Influence of process parameters on the particle-matrix interaction of WC-Co metal matrix composites produced by laser-directed energy depositioncitations
- 2022Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness propertiescitations
- 2022High-stress abrasive wear characteristics of ultra-high strength press-hardening steelcitations
- 2022Experimental studies of high stress abrasive and impact-abrasive wear
- 2022Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steelscitations
- 2021On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardeningcitations
- 2021Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2021Effect of tempering on the impact-abrasive and abrasive wear resistance of ultra-high strength steelscitations
- 2020Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness propertiescitations
- 2020Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steelscitations
- 2020Characteristics of carbide-free medium-carbon bainitic steels in high-stress abrasive wear conditionscitations
- 2019Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2019Research methods for the evaluation of the relevance of application oriented laboratory wear tests
- 2019Research methods for the evaluation of the relevance of application oriented laboratory wear tests
- 2019Role of fracture toughness in impact-abrasion wearcitations
- 2019Impact wear and mechanical behavior of steels at subzero temperaturescitations
- 2019High-stress abrasion of wear resistant steels in the cutting edges of loader bucketscitations
- 2019Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2019Effect of tempering on the impact-abrasive and abrasive wear resistance of ultra-high strength steelscitations
- 2018Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2018Research methods for the evaluation of the relevance of application oriented laboratory wear tests
- 2018Specific wear energy in high-stress abrasion of metals
- 2018Relevance of Laboratory Wear Experiments for the Evaluation of In-Service Performance of Materials
- 2018High-stress abrasion of wear resistant steels in the cutting edges of loader bucketscitations
- 2018Effect of fracture toughness on impact-abrasion wear
- 2017Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2017The effect of impact conditions on the wear and deformation behavior of wear resistant steelscitations
- 2016Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2016Comparison of laboratory wear test results with the in-service performance of cutting edges of loader buckets
- 2016Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2016Experimental study on the behavior of wear resistant steels under high velocity single particle impactscitations
- 2015Comparison of laboratory rolling-sliding wear tests with in-service wear of nodular cast iron rollers against wire ropescitations
- 2015Effect of Multiple Impacts on the Deformation of Wear-Resistant Steelscitations
- 2015Experimental study on the behavior of wear resistant steels under high velocity single particle impactscitations
- 2015Wear behavior and work hardening of high strength steels in high stress abrasioncitations
- 2015The effect of impact conditions on the wear and deformation behavior of wear resistant steelscitations
- 2015The effect of impact conditions on the wear and deformation behavior of wear resistant steelscitations
- 2015The deformation, strain hardening, and wear behavior of chromium-alloyed hadfield steel in abrasive and impact conditionscitations
- 2014Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2014Effect of abrasive properties on the high-stress three-body abrasion of steels and hard metals
- 2014Versatile erosion wear testing with the high speed slurry-pot
- 2013Characterization of the effects of embedded quartz layer on wear rates in abrasive wearcitations
- 2013The effect of microstructure and lead content on the tribological properties of bearing alloyscitations
- 2013Impact-abrasion wear of wear-resistant steels at perpendicular and tilted anglescitations
- 2013Characterization of the wear of nodular cast iron rollers in contact with wire ropescitations
- 2013Characterization of the wear of nodular cast iron rollers in contact with wire ropescitations
- 2013High-stress abrasion and impact-abrasion testing of wear resistant steelscitations
- 2013High-Stress Abrasion and Impact-Abrasion Testing of Wear Resistant Steelscitations
- 2012Characterization of the effects of embedded quartz layer on wear rates in abrasive wear
- 2009Characterization of functional gradient structures in duplex stainless steel castingscitations
Places of action
Organizations | Location | People |
---|
document
Experimental studies of high stress abrasive and impact-abrasive wear
Abstract
In mining and mineral processing, the wear parts are subjected to abrasion and impacts produced by sand, rocks, and boulders. In many applications, the environment is very complex and may contain heavy loads and corrosive agents. Therefore, the materials selection for these conditions can be very demanding. However, the costs caused by replacing of the worn parts and, in the worst case, by unexpected shutdowns are the driving forces for the search for sustainable and wear resistant solutions.<br/>Several application-oriented test methods have been developed for mining and mineral processing segments, such as hauling, crushing, and grinding. In the high-stress abrasive or impact wear testing, the loads must be high enough to deform the surfaces of the tested materials and to crush the relatively large natural rocks used in the tests. Moreover, the possibility to adjust the test parameters for simulating different wear environments is one of the key features in designing new wear test methods and devices. <br/>The main difference between the test methods considered more closely in this presentation are the contact conditions between the rocks and the sample surfaces. The wear mechanisms are also different whether the rocks are crushed between two solid surfaces or the samples are only moving inside a rock bed without a specific counter-body. Moreover, the relative movement and speed between the contacting bodies in the presented systems are different. Although the application-oriented methods are able to produce conditions that are relatively close to the true in-service conditions, in many cases just one method is not enough to simulate the entire wear environment, and therefore it is advisable to use several different methods that complement each other.