Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Serrano, Núria

  • Google
  • 2
  • 4
  • 101

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II)101citations
  • 2014Array of peptide-modified electrodes for the simultaneous determination of Pb(II), Cd(II) and Zn(II)citations

Places of action

Chart of shared publication
Del Valle, Manel
2 / 37 shared
González-Calabuig, Andreu
1 / 6 shared
Prieto-Simón, Beatriz
1 / 2 shared
Cetó, Xavier
1 / 5 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Del Valle, Manel
  • González-Calabuig, Andreu
  • Prieto-Simón, Beatriz
  • Cetó, Xavier
OrganizationsLocationPeople

article

Array of peptide-modified electrodes for the simultaneous determination of Pb(II), Cd(II) and Zn(II)

  • Prieto-Simón, Beatriz
  • Del Valle, Manel
  • Serrano, Núria
  • Cetó, Xavier
Abstract

This paper reports the development of three peptide modified sensors in which glutathione (GSH) and its fragments Cys-Gly and γ-Glu-Cys were immobilized respectively through aryl diazonium electrochemical grafting onto the surface of graphite-epoxy composite electrodes (GEC), and used for the simultaneous determination of Cd(II), Pb(II) and Zn(II). The concentration interval ranged from 0.1 to 1.5 μmol L-1 for each metal, and the technique used was differential pulse adsorptive stripping voltammetry. This study aimed to the comparison of the information provided by one single modified electrode at both fixed and multiple pH values (pH 6.8, 7.5 and 8.2) for the simultaneous determination of the three metals, with those supplied by the three-sensor array at multiple pH values. For the processing of the voltammograms, the fast Fourier transform was selected as the preprocessing tool for data compression coupled with an artificial neural network for the modeling of the obtained responses. © 2014 Elsevier B.V.

Topics
  • surface
  • composite
  • pH value
  • stripping voltammetry