Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dellacorte, Christopher

  • Google
  • 3
  • 16
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Scalable Generation of Hybrid Graphene Nanoscrolls for High-Performance Solid Lubricants5citations
  • 2019High hardness, high elasticity intermetallic compounds for mechanical componentscitations
  • 2010Bonding and microstructural stability in Ni55Ti45 studied by experimental and theoretical methods11citations

Places of action

Chart of shared publication
Kasbe, Pratik S.
1 / 1 shared
Xu, Weinan
1 / 1 shared
Bu, Jinyu
1 / 1 shared
Bosch, Juan
1 / 1 shared
Bigelow, Glen
1 / 1 shared
Stanford, Malcolm K.
1 / 1 shared
Noebe, Ronald D.
2 / 3 shared
Thomas, Fransua
1 / 1 shared
Dixon, David A.
1 / 2 shared
Stott, Amanda C.
1 / 1 shared
Abel, Phillip B.
1 / 1 shared
Pepper, Stephen V.
1 / 1 shared
Garg, Anita
1 / 1 shared
Brauer, Jonathann I.
1 / 1 shared
Bylaska, Eric J.
1 / 1 shared
Glennon, Glenn
1 / 1 shared
Chart of publication period
2024
2019
2010

Co-Authors (by relevance)

  • Kasbe, Pratik S.
  • Xu, Weinan
  • Bu, Jinyu
  • Bosch, Juan
  • Bigelow, Glen
  • Stanford, Malcolm K.
  • Noebe, Ronald D.
  • Thomas, Fransua
  • Dixon, David A.
  • Stott, Amanda C.
  • Abel, Phillip B.
  • Pepper, Stephen V.
  • Garg, Anita
  • Brauer, Jonathann I.
  • Bylaska, Eric J.
  • Glennon, Glenn
OrganizationsLocationPeople

patent

High hardness, high elasticity intermetallic compounds for mechanical components

  • Bigelow, Glen
  • Stanford, Malcolm K.
  • Dellacorte, Christopher
  • Noebe, Ronald D.
  • Thomas, Fransua
Abstract

One or more substitutional elements may be used to reduce the solution treatment temperature and required quench rates for hardening of 60-NITINOL. The advantages of modified NITINOL include that less energy is consumed during the heat treatment process, the material is subjected to less thermal distortion, and less machining is required. Modified NITINOL may have adequate hardness for bearing applications and may display highly elastic behavior.

Topics
  • impedance spectroscopy
  • compound
  • laser emission spectroscopy
  • hardness
  • elasticity
  • intermetallic