People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Broggi, Guillaume Clément
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Microstructural Analysis Of Unidirectional Composites
- 2024An Image-Based Ai Model For Micro-Flow Field Prediction During Resin Transfer Molding
- 2023Multi-scale characterization and modeling of notched strength and translaminar fracture in hybrid thin-ply composites based on different carbon fiber grades
- 2022Deep learning based prediction of fibrous microstructure permeability
- 2022Deep learning accelerated prediction of the permeability of fibrous microstructurescitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Deep learning based prediction of fibrous microstructure permeability
Abstract
Knowledge of permeability of fibrous microstructures is crucial for predicting the mold fill times and resin flow path in composite manufacturing. Herein we report a method to rapidly predict the permeability of 3D fibrous microstructures. Our method relies on predicting the permeability of 2D cross-sections via deep neural networks and extending this capability to 3D microstructures via circuit analogy as a means of reduced order modeling. Approximately 50% of the permeability predictions of 2D cross-sections have 10% or less deviation from the permeability results obtained via flow simulations in Geodict. Computational time required for predicting the permeability of 3D microstructures is reduced from hours to less than 10 seconds. This framework enables fast and accurate prediction of micro-permeability and serves as the first building block towards prediction of fabric mesostructures’ permeability via deep learning based methods. ; Aerospace Manufacturing Technologies