Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anisimov, Andrei

  • Google
  • 8
  • 9
  • 93

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Shearography With Thermal Loading For Defect Detection Of Small Defects In Cfrp Compositescitations
  • 2023Towards safe shearography inspection of thick composites with controlled surface temperature heating11citations
  • 2022Shearography non-destructive testing of thick GFRP laminates46citations
  • 2022Shearography non-destructive testing of a composite ship hull section subjected to multiple impactscitations
  • 2021Spatially modulated thermal excitations for shearography non-destructive inspection of thick composites4citations
  • 2018EXTREME shearography2citations
  • 2017Epoxy-hBN nanocomposites30citations
  • 2016Thermal strains in heated Fiber Metal Laminatescitations

Places of action

Chart of shared publication
Groves, Roger
8 / 29 shared
Tao, Nan
5 / 5 shared
Elenbaas, Marcel
1 / 1 shared
Morshuis, P. H. F.
1 / 15 shared
Saha, D.
1 / 4 shared
Tsekmes, I. A.
1 / 4 shared
Kochetov, R.
1 / 13 shared
Sinke, J.
1 / 19 shared
Müller, B.
1 / 17 shared
Chart of publication period
2024
2023
2022
2021
2018
2017
2016

Co-Authors (by relevance)

  • Groves, Roger
  • Tao, Nan
  • Elenbaas, Marcel
  • Morshuis, P. H. F.
  • Saha, D.
  • Tsekmes, I. A.
  • Kochetov, R.
  • Sinke, J.
  • Müller, B.
OrganizationsLocationPeople

conferencepaper

Shearography non-destructive testing of a composite ship hull section subjected to multiple impacts

  • Anisimov, Andrei
  • Groves, Roger
  • Tao, Nan
  • Elenbaas, Marcel
Abstract

The use of thick composites and sandwich structures is increasing rapidly in marine, aerospace, and wind energy industries [1–3]. For example in the marine sector, sandwich structures consisting of glassfiber laminate skins bonded to a foam core are attractive because of the advantages of being light-weight, resistant to corrosion and underwater shocks, and cost-effective [4]. The thickness of these structures can be more than 50 mm. Nevertheless, various defects including delaminations and fiber breakage tend to occur in thick composites because of material complexity. These defects can arise from extreme loads such as impact and blast and can degrade material properties and structural integrity significantly. Hence, it is important to advance non-destructive testing (NDT) towards composite structures of significant thickness. The objective of this study is to perform shearography NDT of a large-scale thick composite structure, specifically a composite ship hull section in a shipyard environment. Shearography is a full-field and non-contact optical NDT method. It reveals defects by comparing two states of deformation of a test object. By applying a suitable loading, the defects can be revealed by looking for defect-induced anomalies in fringe maps or phase maps, which can be related to surface strain components. The composite ship hull section is a RAMSSES (www.ramsses-project.eu) demonstrator at Damen Shipyards. Before shearography inspection, multiple impact tests surpassing helicopter emergency landing loads (https://vimeo.com/522716506) have been performed on the hull shell and its composite helicopter deck for proving the resilience of composites to harsh marine environments. We will present our experimental results on shearography inspection of the impact damage in this large-scale composite structure. A total area of about 1×1.5 m2 was inspected by stitching six fields of view of 0.6×0.6 m2. Different heating scenarios including step heating as well as a mechanical loading were performed for shearography NDT. A brief comparison between thermal loading and mechanical loading on thick composite inspection with shearography will also be reported. Our previous work with a 51 mm thick marine laminate [5] showed that defects at 5 to 20 mm depth can be detected successfully using shearography with thermal loading. Here we aim at bringing the technique out of the laboratory and extending shearography to applications to composites with a thickness of more than 50 mm.

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • phase
  • composite
  • impact test
  • defect