Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abraham, Jens

  • Google
  • 1
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surfacecitations

Places of action

Chart of shared publication
Rogez, Yves
1 / 5 shared
Statz, Christoph
1 / 6 shared
Hahnel, Ronny
1 / 3 shared
Kofman, Wlodek W.
1 / 21 shared
Ciarletti, Valérie
1 / 34 shared
Herique, Alain
1 / 17 shared
Hegler, Sebastian
1 / 4 shared
Pasquero, Pierre
1 / 4 shared
Zine, Sonia
1 / 10 shared
Plettemeier, Dirk
1 / 20 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Rogez, Yves
  • Statz, Christoph
  • Hahnel, Ronny
  • Kofman, Wlodek W.
  • Ciarletti, Valérie
  • Herique, Alain
  • Hegler, Sebastian
  • Pasquero, Pierre
  • Zine, Sonia
  • Plettemeier, Dirk
OrganizationsLocationPeople

document

Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surface

  • Rogez, Yves
  • Statz, Christoph
  • Hahnel, Ronny
  • Kofman, Wlodek W.
  • Ciarletti, Valérie
  • Abraham, Jens
  • Herique, Alain
  • Hegler, Sebastian
  • Pasquero, Pierre
  • Zine, Sonia
  • Plettemeier, Dirk
Abstract

The scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard ESA spacecraft Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus. This is done by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the CONSERT unit aboard the lander will receive and process the radio signal emitted by the orbiter counterpart of the instrument. It will then retransmit a signal back to the orbiter to be received by CONSERT. This happens at the milliseconds time scale. During the descent of lander Philae onto the comet's surface, CONSERT was operated as a bi-static RADAR. A single measurement of the obtained data is composed of the dominant signal from the direct line-of-sight propagation path between lander and orbiter as well as paths from the lander's signal being reflected by the comet's surface. From peak power measurements of the dominant direct path during the descent, the knowledge of the orbiter and lander positions and simulations of CONSERT's orbiter and lander antenna characteristics as well as polarization properties, we were able to reconstruct the lander's attitude and estimate the spin rate of the lander along the descent trajectory. Additionally, certain operations and manoeuvres of orbiter and lander, e.g. the deployment of the lander legs and CONSERT antennas or the orbiter change of attitude in order to orient the science towards the assumed lander position, are also visible in the data. The information gained on the landers attitude is used in the reconstruction of the dielectric properties of 67P/C-G's surface and near subsurface (metric to decametric scale) and will hopefully prove helpful supporting the data interpretation of other instruments. In the CONSERT measurements, the comet's surface is visible during roughly the last third of the descent enabling a mean permittivity estimation of the surface and near subsurface covered by the instruments footprint along the descent path. The comparatively large timespan with surface signatures exhibits a spatial diversity necessary for the mapping of dominant signatures and the estimation of the dielectric properties of prominent features yielding a possible contrast and permittivity mapping of the comet's surface in the vicinity of the original landing site.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • simulation