People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kofman, Wlodek W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosetta
- 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/CG
- 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67P
- 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydos
- 2016Characterizing the interior of 67P in the vicinity of Abydos
- 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G
- 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos
- 2016Mineralogical Implications of CONSERT Permittivity Characterization of 67P
- 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data
- 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surface
- 2015Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-G
- 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Lander
- 2015Broadband Permittivity Measurements on Porous Planetary Soil Simulants, in Relation with the Rosetta Mission
- 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Site
- 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurements
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing angles
- 2009Comet nuclei primordial aggregation effects on their internal structure
- 2008Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data (Rosetta Mission) through spectral techniques
- 2008Comet nuclei aggregation and thermal simulations to prepare the Rosetta mission
- 2007Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data by Using Grid Computing Techniques (Rosetta Mission).
Places of action
Organizations | Location | People |
---|
document
Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G
Abstract
Unique information about the internal structure of the nucleus of comet 67P/C-G was provided by the CONSERT bistatic radar on-board Rosetta and Philae [1]. Analysis of the propagation of its signal throughout the small lobe indicated that the real part of the permittivity at 90 MHz is of (1.27±0.05). The first interpretation of this value using dielectric properties of mixtures of dust and ices (H<sub>2</sub>O, CO<sub>2</sub>), led to the conclusion that the comet porosity ranges between 75–85%. In addition, the dust/ice ratio was found to range between 0.4-2.6 and the permittivity of dust (including 30% of porosity) was determined to be lower than 2.9.The dust permittivity estimate is now reduced by taking into account the updated values of nucleus density and of dust/ice ratio, in order of providing further insights into the nature of the constituents of comet 67P/C-G [2]. We adopt a systematic approach: i) determination of the dust permittivity as a function of the ice (I) to dust (D) and vacuum (V) volume fraction; ii) comparison with the permittivity of meteoritic, mineral and organic materials from literature and laboratory measurements; iii) test of several composition models of the nucleus, corresponding to cosmochemical end members of 67P/C-G. For each of these models the location in the ternary I/D/V diagram is calculated based on available dielectric measurements, and confronted to the locus of 67P/C-G. The number of compliant models is small and the cosmochemical implications of each are discussed [2]. An important fraction of carbonaceous material is required in the dust in order to match CONSERT permittivity observations, establishing that comets represent a massive carbon reservoir.Support from Centre National d'Études Spatiales (CNES, France) for this work, based on observations with CONSERT on board Rosetta, is acknowledged. The CONSERT instrument was designed, built and operated by IPAG, LATMOS and MPS and was financially supported by CNES, CNRS, UJF/UGA, DLR and MPS. Rosetta is an ESA mission with contributions from its member states and NASA.[1] Kofman et al., Science, 349, 6247, aaa0639, 2015. [2] Herique et al., MNRAS, submitted, 2016.