People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vippola, Minnamari
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (58/58 displayed)
- 2025Severe shot peening : A promising solution for mitigating stress corrosion cracking in solution-annealed LPBF 316 l stainless steel
- 2024Stress corrosion cracking performance of LPBF-built 316L stainless steel post-processed with heat treatment and severe shot peening
- 2024Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holdercitations
- 2024Synergistic effects of heat treatments and severe shot peening on residual stresses and microstructure in 316L stainless steel produced by laser powder bed fusioncitations
- 2024Comparison of abrasion wear testing to an in-service feed hopper wear case
- 2024Magnetic domain walls interacting with dislocations in micromagnetic simulationscitations
- 2024Influence of displacement amplitude on fretting-induced friction and wear of steel in oil-lubricated contactcitations
- 2024Magnetic behavior of steel studied by in-situ Lorentz microscopy, magnetic force microscopy and micromagnetic simulations
- 2024Direct and Indirect Cavitation-Erosion Assessment of Cold Sprayed Aluminum Alloy/Quasicrystals Composite Coatings
- 2024Investigating Impact-Induced Deformation in Cold-Sprayed Aluminum-Quasicrystals Composite Coatings
- 2024A Comparative Study on Wear Resistance of Cold-Sprayed Aluminum/Quasicrystal Composite Coatingscitations
- 2023Cold sprayed Aluminum-Quasicrystal Composite Coating: Bonding Mechanism Evaluation by SEM and TEM
- 2023Magnetic Domain Structure of Ferromagnetic Steels Studied by Lorentz Microscopy and Magnetic Force Microscopy
- 2023Multi-instrumental approach to domain walls and their movement in ferromagnetic steels – Origin of Barkhausen noise studied by microscopy techniquescitations
- 2023Tribological Assessment of Cold Sprayed Aluminum-Quasicrystal Composite Coatingscitations
- 2023Wetting Behavior and Functionality Restoration of Cold-Sprayed Aluminum-Quasicrystalline Composite Coatingscitations
- 2022An insight into the rough surface effect on fretting characteristics of quenched and tempered steel
- 2022Microscopic characterization of fretting damage in quenched and tempered steel
- 2022Applications of electron microscopy in additive manufacturing of porous multi-ceramics structures
- 2022Novel utilization of microscopy and modelling to better understand Barkhausen noise signal
- 2022Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stressescitations
- 2022The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316L stainless steelcitations
- 2022Microstructure and Wetting Performance of High-Pressure Cold Sprayed Quasi-Crystalline Composite Coatings
- 2022Surface and subsurface modification of selective laser melting built 316L stainless steel by means of severe shot peening
- 2022Investigating Impact-Induced Deformation in Cold-Sprayed Aluminum-Quasicrystals Composite Coatings
- 2021Additive manufactured 316l stainless-steel samples : Microstructure, residual stress and corrosion characteristics after post-processingcitations
- 2021Additive manufactured 316l stainless-steel samplescitations
- 2021Fabrication of self-supporting structures made of washcoat materials (γ-Al2O3-CeO2) by ceramic stereolithographycitations
- 2021Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy - effect of microstructural steel features on Barkhausen noisecitations
- 2021Fabrication of self-supporting structures made of washcoat materials (γ-Al2O3-CeO2) by ceramic stereolithography : Towards digital manufacturing of enhanced catalytic converterscitations
- 2021Motion of Domain Walls in Ferromagnetic Steel Studied by TEM – Effect of Microstructural Features
- 2021Cracks and degradation layers in large flat-on-flat fretting contact with steels and cast ironcitations
- 2020A comprehensive review of the photopolymerization of ceramic resins used in stereolithographycitations
- 2020Statistical evaluation of the Barkhausen Noise Testing (BNT) for ground samples
- 2020The effect of substrate pre-treatment on durability of rubber-stainless steel adhesioncitations
- 2020Structural Characteristics of Fresh, Thermally Aged, Poisoned and Regenerated Pt-Pd Catalysts Studied by Analytical Transmission Electron Microscopy
- 2020Cracking and Failure Characteristics of Flame Cut Thick Steel Platescitations
- 2020Cracks and degradation layers in large flat-on-flat fretting contact with steels and cast ironcitations
- 2019Role of Steel Plate Thickness on the Residual Stress Formation and Cracking Behavior During Flame Cuttingcitations
- 2019Case Depth Prediction of Nitrided Samples with Barkhausen Noise Measurementcitations
- 2019The formation and characterization of fretting-induced degradation layers using quenched and tempered steelcitations
- 2019Characterization of cracks formed in large flat-on-flat fretting contactcitations
- 2018Limitations of eddy current inspection in railway rail evaluationcitations
- 2018Surface layer characterization of shot peened gear specimenscitations
- 2018Effect of microstructural characteristics of thick steel plates on residual stress formation and cracking during flame cuttingcitations
- 2018Properties of HVOF-sprayed Stellite-6 coatingscitations
- 2018Properties of HVOF-sprayed Stellite-6 coatingscitations
- 2017Characterization of Flame Cut Heavy Steelcitations
- 2017A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatingscitations
- 2016Electron Microscopic Characterization of Thermally-Sprayed Cr3C2-37WC-18-NiCoCrFe Coating
- 2016Artificial flaw detection with ultrasound in austenitic stainless steels
- 2016Barkhausen noise response of three different welded duplex stainless steelscitations
- 2016The Characterization of Flame Cut Heavy Steel – The Residual Profiling of Heat Affected Surface Layercitations
- 2015Characterisation of novel regenerated cellulosic, viscose, and cotton fibres and the dyeing properties of fabricscitations
- 2015Modelling of Material Properties Using Frequency Domain Information from Barkhausen Noise Signalcitations
- 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensationcitations
- 2014Effect of abrasive properties on the high-stress three-body abrasion of steels and hard metals
- 2011Aerosol characterization and lung deposition of synthesized TiO 2 nanoparticles for murine inhalation studiescitations
Places of action
Organizations | Location | People |
---|
document
Applications of electron microscopy in additive manufacturing of porous multi-ceramics structures
Abstract
Ceramic additive manufacturing (AM), also known as ceramic 3D printing, allows the fabrication of 3D ceramic structures with complex geometries that are impossible to be built using traditional shaping methods [1]. Electron microscopy can assist in developing this “long-term game changer for manufacturers” by providing manufacturers with the characterization of the ceramic powders and the quality control of the printed structures. At Tampere University, the advanced electron microscopy techniques available at Tampere Microscopy Center are frequently employed to promote ceramic AM by controlling the quality of the prints and identifying microstructural defects that occur during the printing and heat treatment processes. Our recent study [2] demonstrated the potential of AM to fabricate a new generation of catalytic converters (CCs) by printing self-standing (substrate-less) honeycomb structures out of washcoat materials (gamma-alumina and ceria). Gamma-alumina is a common washcoat material due to its high surface area, however, it loses its surface area at high temperature, and therefore, it requires stabilizers such as ceria to avoid this phenomenon. The structures were printed using stereolithography technique and were sintered at two different temperatures (900 ℃ and 1100 ℃). The homogenous spatial distribution of alumina (orange) and ceria (cyan) powders within the sintered structure at 1100 ℃ was visualized using SEM-EDS mapping (Fig.1(a)). This confirms that ceria did not sediment during the printing process. Hierarchical porosity of the final structure was characterized by SEM, confirming different levels of porosity ranging from 1 mm (open channels intended for gas flow (Fig. 1(b)) to interconnected pores less than 10 μm (Fig. 1(c)). The stabilizing effect of ceria on gamma-alumina was studied by surface area measurements and analytical electron microscopy. The STEM and STEM-EDS images shown in Fig. 2(a)-(c) confirmed that no remarkable change in the particle size of alumina can be noticed upon the addition of ceria, indicating that ceria was not effective in stabilizing gamma-alumina at 900 ℃. On the other hand, Figs. 2(d)-(e) show that the presence of faceted ceria particles in the final sintered structure prevented the particle size growth of alumina at 1100 ℃, compared to the pure alumina sintered at 1100 ℃ (Fig. 2(f)).<br/>As the ongoing steps of our research, we are currently using electron microscopy techniques to investigate the effect of organic and inorganic binders on the microstructure of the printed structures and correlate that to the mechanical strength of the structures.