People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birkett, Martin
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2022Enhanced mechanical and biocompatibility performance of Ti(1- x )Ag(x) coatings through intermetallic phase modificationcitations
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility citations
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibilitycitations
- 2021Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substrates
- 2021Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputtering
- 2019A Numerical and Experimental Study of Adhesively-Bonded Polyethylene Pipelinescitations
- 2018Tuning the antimicrobial behaviour of Cu85Zr15 thin films in “wet” and “dry” conditions through structural modificationscitations
- 2016Mechanical behaviour of adhesively bonded polyethylene tapping teescitations
- 2016Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputteringcitations
- 2016Resistor trimming geometry; past, present and futurecitations
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Optimization of the deposition and annealing of CuAIMo thin film resistors
- 2008Discrete resistor technologies and potential future advancements
- 2006Effects of annealing on the electrical properties of NiCr vs AlCu thin film resistors prepared by DC magnetron sputtering
Places of action
Organizations | Location | People |
---|
document
Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputtering
Abstract
Materials exhibiting superior mechanical properties and excellent biocompatibility are sought after for biomedical applications and implant manufacturing. This work explores a solution to extend the current lifetime of orthopaedic implants by coating the surface with thin films of harder biocompatible alloy systems. Ti(1-x)M(x) (M=Ag,Au), thin films were deposited on glass substrates in increasing concentration ofx= 0 to 1 by magnetron sputtering deposition in order to investigate the development of hardness and biocompatibility. As grown thin films were heat treated in Ar environment at elevated temperatures to aid the development of the desired intermetallic phase. Mechanical properties of Ti(1-x)M(x) thin films were characterized by the nanoindentation technique and then corelated to the microstructure and morphology of the thin films studied by X-raydiffraction and electron microscopy. Cytotoxicity of sample extracts were characterized by counting the viable cells after exposure using Alamar blue assay and the corresponding ions leached in the extract solution was measured using inductively coupled optical emission spectroscopy technique. Results show that the Ti-Metal matrix develops different intermetallic structures with varying metal concentration in the thin films and the phase difference between these intermetallic reaches an optimised point with fine tuning of heat treatment condition which enables them to act as an inhibition source for the slipping of dislocation planes thereby enhancing the hardness of the film. A peak hardness value of 7.39GPa is achieved for Ti-Ag thin films from the formation of the tetragonal TiAg phase while a peak hardness of 14.9 GPa is achieved for Ti-Au thin films with the development of the β phase of Ti-Au intermetallic. All the sets of thin films exhibit extremely high biocompatibility with cell viability values greater than 90%.