Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Faura, Georgina

  • Google
  • 2
  • 4
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Analysis of Amino Acid Mixtures by Voltammetric Electronic Tongues and Artificial Neural Networkscitations
  • 2016Analysis of amino acid mixtures by voltammetric electronic tongues and artificial neural networks20citations

Places of action

Chart of shared publication
Del Valle, Manel
1 / 37 shared
González-Calabuig, Andreu
1 / 6 shared
Gonzãlez-Calabuig, Andreu
1 / 6 shared
Valle Zafra, Manuel Del
1 / 17 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Del Valle, Manel
  • González-Calabuig, Andreu
  • Gonzãlez-Calabuig, Andreu
  • Valle Zafra, Manuel Del
OrganizationsLocationPeople

article

Analysis of Amino Acid Mixtures by Voltammetric Electronic Tongues and Artificial Neural Networks

  • Faura, Georgina
  • Del Valle, Manel
  • González-Calabuig, Andreu
Abstract

© 2016 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim A new voltammetric electronic tongue formed with graphite-epoxy composite electrodes which were modified with metal-oxide nanoparticles is presented for the quantification of tryptophan, tyrosine and cysteine aminoacid mixtures. The signals were obtained by cyclic voltammetry, and data was processed using two different chemometric techniques, artificial neural networks and partial least squares regression, for comparison purposes. Before performing artificial neural networks data was compressed by fast Fourier transform or discrete wavelet transform. The best results were attained using artificial neural networks with previous fast Fourier transform compression of the data with a normalized root-mean-square error of 0.032 (n=15) for the external test subset. The present method shows results comparable to other similar approaches, but with a much easier sampling process for the training set and new electrode modifiers to form the voltammetric sensors.

Topics
  • nanoparticle
  • impedance spectroscopy
  • composite
  • cyclic voltammetry