People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prasad, Elke
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Printability of pharmaceutical Fused Deposition Modeling (FDM) feedstock material
Abstract
Purpose -- 3D printing (3DP) of pharmaceutical formulations via commercially available FDM printers facilitates advanced control of the microstructure of the tablet core and therefore drug release properties. For this 3DP process an intermediate feedstock material is manufactured and used in the FDM process.<br/>However, mechanical and rheological properties of pharmaceutically approved polymers are often not suitable for this process. In order to identify suitable filaments for the FDM process, the objective of this study was to perform a mechanical and rheological characterisation of the feedstock material during an FDM process.<br/><br/>Conclusions -- Mechanical properties of an FDM process for commercial and in-house prepared pharmaceutically relevant feed stock material were investigated and have shown the material dependant impact of print geometries and print speed on the FDM process; informing future development of pharmaceutically relevant feedstock material.<br/>