Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rieke, Peter C.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLScitations

Places of action

Chart of shared publication
Marina, Olga A.
1 / 12 shared
Pederson, Larry R.
1 / 7 shared
Coffey, Greg W.
1 / 8 shared
Thomsen, Ed C.
1 / 3 shared
Williams, Mark C.
1 / 2 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Marina, Olga A.
  • Pederson, Larry R.
  • Coffey, Greg W.
  • Thomsen, Ed C.
  • Williams, Mark C.
OrganizationsLocationPeople

document

ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS

  • Marina, Olga A.
  • Pederson, Larry R.
  • Rieke, Peter C.
  • Coffey, Greg W.
  • Thomsen, Ed C.
  • Williams, Mark C.
Abstract

The reversibility of the electrodes for a solid oxide fuel cell with an yttria-stabilized zirconia (YSZ) electrolyte was examined using electrochemical impedance spectroscopy and current interrupt methods. The fuel electrodes were nickel/zirconia cermet and lanthanum-doped strontium titanate/doped ceria composites. The air electrodes were lanthanum strontium ferrite (LSF) and lanthanum strontium copper ferrite (LSCuF). Under the experimental conditions studied all four electrodes were able to operate in both the fuel cell and electrolyzer modes. The titanate/ceria fuel electrode performed substantially better in the electrolyzer mode than state-of-art Ni-YSZ. Moreover, it showed slightly higher activity for water electrolysis as compared to hydrogen oxidation. Air electrodes were less active in the electrolyzer than fuel cell modes. LSF typically provided higher overpotential losses in both modes than copper-substituted LSF. Changes in the defect chemistry of electrode materials under cathodic and anodic polarization are discussed.

Topics
  • impedance spectroscopy
  • nickel
  • laser emission spectroscopy
  • Strontium
  • composite
  • Hydrogen
  • copper
  • defect
  • Lanthanum