People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pederson, Larry R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2
- 2010Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphoruscitations
- 2010Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic componentscitations
- 2010SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interfacecitations
- 2007Electrode Performance in Reversible Solid Oxide Fuel Cellscitations
- 2006Electrical, Thermoelectric, and Structural Properties of La(MxFe1-x)O3 (M=Mn, Ni, Cu)citations
- 2004ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS
Places of action
Organizations | Location | People |
---|
document
ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS
Abstract
The reversibility of the electrodes for a solid oxide fuel cell with an yttria-stabilized zirconia (YSZ) electrolyte was examined using electrochemical impedance spectroscopy and current interrupt methods. The fuel electrodes were nickel/zirconia cermet and lanthanum-doped strontium titanate/doped ceria composites. The air electrodes were lanthanum strontium ferrite (LSF) and lanthanum strontium copper ferrite (LSCuF). Under the experimental conditions studied all four electrodes were able to operate in both the fuel cell and electrolyzer modes. The titanate/ceria fuel electrode performed substantially better in the electrolyzer mode than state-of-art Ni-YSZ. Moreover, it showed slightly higher activity for water electrolysis as compared to hydrogen oxidation. Air electrodes were less active in the electrolyzer than fuel cell modes. LSF typically provided higher overpotential losses in both modes than copper-substituted LSF. Changes in the defect chemistry of electrode materials under cathodic and anodic polarization are discussed.