People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohseni, Ehsan
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 20243-Dimensional residual neural architecture search for ultrasonic defect detectioncitations
- 2023Application of eddy currents for inspection of carbon fibre composites
- 2023Application of machine learning techniques for defect detection, localisation, and sizing in ultrasonic testing of carbon fibre reinforced polymers
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Mapping SEARCH capabilities to Spirit AeroSystems NDE and automation demand for composites
- 2023Using neural architecture search to discover a convolutional neural network to detect defects From volumetric ultrasonic testing data of composites
- 2023Phased array inspection of narrow-gap weld LOSWF defects for in-process weld inspection
- 2022Transfer learning for classification of experimental ultrasonic non-destructive testing images from synthetic data
- 2022Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Automated bounding box annotation for NDT ultrasound defect detection
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2022Investigating ultrasound wave propagation through the coupling medium and non-flat surface of wire + arc additive manufactured components inspected by a PAUT roller-probe
- 2022Automated multi-modal in-process non-destructive evaluation of wire + arc additive manufacturing
- 2022Dual-tandem phased array inspection for imaging near-vertical defects in narrow gap welds
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
Places of action
Organizations | Location | People |
---|
document
Transfer learning for classification of experimental ultrasonic non-destructive testing images from synthetic data
Abstract
Lack of experimental training data is a significant challenge for the use of Deep Learning algorithms in Non-Destructive Testing. This work provides a Transfer Learning solution to the challenge of low training data volumes in Non-Destructive Ultrasonic Testing of carbon fibre reinforced polymer composites, which are known for their high structural ultrasonic noise. <br/>The performance of Convolutional Neural Networks for classification was initially tested on experimental data when trained on simulated data. The results demonstrated that due to inaccurate noise production the simulated data domain was too far from the experimental test data to provide accurate classification. Different synthetic datasets were then generated using a variety of methods and their effect on classification performance was studied. The primary focus of these datasets were different methods of noise generation for more experimentally accurate simulated images. <br/>To allow for the direct comparison of the different synthetic data generation methods, a standardized custom Convolutional Neural Network was developed. To make sure that the Neural Network was complex enough for the solution space hyperparameter optimization was performed on the network using a secondary experimental dataset. The hyperparameter optimization was a variant of Regularized Evolution [1] which was adapted for continuous and integer valued hyperparameters.The algorithm was initialized with a Population of 128 configurations generated via a random search. At each iteration of Regularized Evolution, a parent model was selected from a sample of configurations from the population, with the highest F1 score. A new child configuration was generated by mutating one of the parents hyperparameters. This child model was then trained and prepended to the population with the ‘oldest’ model discarded. The best performing model was then used for comparisons of classification accuracy for different synthetic datasets. The best performing synthetic dataset saw an F1 score increase of 0.34 (0.738-0.394) from the simulated dataset.<br/>