Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fabritius, H.

  • Google
  • 9
  • 50
  • 534

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2019DAMASK - The Dusseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scalecitations
  • 2016Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study47citations
  • 2012Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers23citations
  • 2011Chitin in the Exoskeletons of Arthropoda: From Ancient Design to Novel Materials Science62citations
  • 2011Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations109citations
  • 2008Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster152citations
  • 2008Crystallographic textures from the exoskeleton of the lobster Homarus americanus and calculation of the mechanical properties of the calcite phasecitations
  • 2006Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation92citations
  • 2005Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.49citations

Places of action

Chart of shared publication
Meier, F.
1 / 6 shared
Friak, M.
3 / 18 shared
Fujita, N.
1 / 3 shared
Kok, P.
1 / 1 shared
Roters, F.
1 / 51 shared
Shanthraj, P.
1 / 3 shared
Grilli, N.
1 / 9 shared
Reuber, C.
1 / 3 shared
Stricker, M.
1 / 5 shared
Maiti, T.
1 / 2 shared
Raabe, D.
3 / 79 shared
Hochrainer, T.
1 / 17 shared
Ebrahimi, A.
1 / 3 shared
Jia, N.
1 / 5 shared
Janssens, K.
1 / 4 shared
Nikolov, S.
4 / 15 shared
Werner, E.
1 / 9 shared
Wong, S.
1 / 4 shared
Diehl, M.
1 / 10 shared
Weygand, D.
1 / 40 shared
Ma, D.
1 / 22 shared
Hild, S.
1 / 3 shared
Friák, M.
1 / 25 shared
Karsten, S.
1 / 1 shared
Alagboso, F.
1 / 1 shared
Petrov, M.
2 / 4 shared
Seidl, B. H. M.
1 / 1 shared
Neugebauer, J.
3 / 45 shared
Zhu, Lf.
1 / 1 shared
Janus, A. M.
1 / 3 shared
Huber, J.
1 / 4 shared
Lu, J.
1 / 19 shared
Hemzalová, P.
1 / 2 shared
Ruangchai, S.
1 / 1 shared
Ziegler, A.
2 / 10 shared
Raabe, Dierk
5 / 523 shared
Rahman, M. A.
1 / 3 shared
Maniruzzaman, M.
1 / 6 shared
Gafur, M. A.
1 / 9 shared
Sachs, C.
3 / 8 shared
Lymperakis, L.
1 / 6 shared
Paris, O.
1 / 34 shared
Li, C.
1 / 31 shared
Al-Sawalmih, A.
1 / 6 shared
Siegel, S.
1 / 6 shared
Yi, S.
1 / 65 shared
Fratzl, Prof. Dr. Dr. H. C. Peter
1 / 569 shared
Raue, L.
1 / 3 shared
Klein, H.
1 / 7 shared
Hagedorn, Monica
1 / 1 shared
Chart of publication period
2019
2016
2012
2011
2008
2006
2005

Co-Authors (by relevance)

  • Meier, F.
  • Friak, M.
  • Fujita, N.
  • Kok, P.
  • Roters, F.
  • Shanthraj, P.
  • Grilli, N.
  • Reuber, C.
  • Stricker, M.
  • Maiti, T.
  • Raabe, D.
  • Hochrainer, T.
  • Ebrahimi, A.
  • Jia, N.
  • Janssens, K.
  • Nikolov, S.
  • Werner, E.
  • Wong, S.
  • Diehl, M.
  • Weygand, D.
  • Ma, D.
  • Hild, S.
  • Friák, M.
  • Karsten, S.
  • Alagboso, F.
  • Petrov, M.
  • Seidl, B. H. M.
  • Neugebauer, J.
  • Zhu, Lf.
  • Janus, A. M.
  • Huber, J.
  • Lu, J.
  • Hemzalová, P.
  • Ruangchai, S.
  • Ziegler, A.
  • Raabe, Dierk
  • Rahman, M. A.
  • Maniruzzaman, M.
  • Gafur, M. A.
  • Sachs, C.
  • Lymperakis, L.
  • Paris, O.
  • Li, C.
  • Al-Sawalmih, A.
  • Siegel, S.
  • Yi, S.
  • Fratzl, Prof. Dr. Dr. H. C. Peter
  • Raue, L.
  • Klein, H.
  • Hagedorn, Monica
OrganizationsLocationPeople

article

DAMASK - The Dusseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale

  • Meier, F.
  • Friak, M.
  • Fujita, N.
  • Kok, P.
  • Roters, F.
  • Shanthraj, P.
  • Grilli, N.
  • Reuber, C.
  • Stricker, M.
  • Maiti, T.
  • Raabe, D.
  • Hochrainer, T.
  • Ebrahimi, A.
  • Jia, N.
  • Janssens, K.
  • Nikolov, S.
  • Werner, E.
  • Fabritius, H.
  • Wong, S.
  • Diehl, M.
  • Weygand, D.
  • Ma, D.
Abstract

Crystal Plasticity (CP) modeling is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in polycrystalline aggregates. However, when considering the increasingly complex microstructural composition of modern alloys and their exposure to—often harsh—environmental conditions, the focus in materials modeling has shifted towards incorporating more constitutive and internal variable details of the process history and environmental factors into these structure–property relations. Technologically important fields of application of enhanced CP models include phase transformations, hydrogen embrittlement, irradiation damage, fracture, and recrystallization. A number of niche tools, containing multi-physics extensions of the CP method, have been developed to address such topics. Such implementations, while being very useful from a scientific standpoint, are, however, designed for specific applications and substantial efforts are required to extend them into flexible multi-purpose tools for a general end-user community. With the Düsseldorf Advanced Material Simulation Kit (DAMASK) we, therefore, undertake the effort to provide an open, flexible, and easy to use implementation to the scientific community that is highly modular and allows the use and straightforward implementation of different types of constitutive laws and numerical solvers. The internal modular structure of DAMASK follows directly from the hierarchy inherent to the employed continuum description. The highest level handles the partitioning of the prescribed field values on a material point between its underlying microstructural constituents and the subsequent homogenization of the constitutive response of each constituent. The response of each microstructural constituent is determined, at the intermediate level, from ...

Topics
  • impedance spectroscopy
  • single crystal
  • phase
  • simulation
  • Hydrogen
  • texture
  • plasticity
  • recrystallization
  • homogenization
  • crystal plasticity