People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Immonen, Kirsi
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2025A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
- 2024Effect of unbleached and bleached softwood cellulose pulp fibers on poly(lactic acid) propertiescitations
- 2024Biocomposites through foam-forming of long fiber suspensions
- 2023Effect of accelerated aging on properties of biobased polymer films applicable in printed electronicscitations
- 2022Recycling of 3D Printable Thermoplastic Cellulose-Compositecitations
- 2022Biocomposite modeling by tomographic feature extraction and synthetic microstructure reconstructioncitations
- 2022Novel Cellulose based Composite Material for Thermoplastic processing
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Thermoplastic Cellulose-Based Compound for Additive Manufacturingcitations
- 2020Feasibility of foam forming technology for producing wood plastic compositescitations
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Poly(lactic acid)/pulp fiber compositescitations
- 2020Poly(lactic acid)/pulp fiber composites:The effect of fiber surface modification and hydrothermal aging on viscoelastic and strength propertiescitations
- 2019Material sorting using hyperspectral imaging for biocomposite recycling
- 2018Modelling of hygroexpansion in birch pulp - PLA composites
- 2018Modelling of hygroexpansion in birch pulp - PLA composites:A numerical approach based on X-ray micro-tomography
- 2018Totally bio-based, high-performance wood fibre biocomposites
- 2017Effects of Surfactants on the Preparation of Nanocellulose-PLA Compositescitations
- 2016Predicting stiffness and strength of birch pulp : polylactic acid compositescitations
- 2016Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite materialcitations
- 2016Highly porous fibre structures and biocomposites made of mixtures of wood, biopolymers and hemp
- 2016Predicting stiffness and strength of birch pulp:Polylactic acid compositescitations
- 2016Predicting stiffness and strength of birch pulp – Polylactic acid compositescitations
- 2015Improving mechanical properties of novel flax/tannin composites through different chemical treatmentscitations
- 2015Novel hybrid flax reinforced supersap composites in automotive applicationscitations
- 2011Potential of chemo- enzymatically modified CTMP in biocomposites
- 2011Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matricescitations
Places of action
Organizations | Location | People |
---|
document
Novel Cellulose based Composite Material for Thermoplastic processing
Abstract
Novel solutions using renewable materials are needed to tackle sustainability issues in industry. Totally cellulose-based composites, suitable for thermoplastic processing are introduced in this paper. The polymer matrix was a thermoplastic cellulose ester, Thermocell. Composites reinforcing fibres consisted of microcellulose, bleached softwood kraft pulp fibres, or long regenerated viscose fibres. The latest allowed to improve composites mechanical performance, especially at 20 wt-% loading. In the extrusion process, fibres oriented along processing direction, giving hopes for a future use in extrusion type additive manufacturing (AM). However, further developments of the AM system are required to print this material. With 20 wt-% microcellulose, the composite could be 3D printed using a fused granular fabrication process. Improved microcellulose dispersion was achieved with 2 wt-% tall-oil fatty acid lignin ester or cellulose ester ether additives. Wood-based additives also helped to decrease the internal porosity, leading to better mechanical performance of 3D printed materials.