People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tribot, Amélie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Development and Characterization of Poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cowpea Lignocellulosic Fibers as a Filler via Injection Molding and Extrusion Film-Castingcitations
- 2023Properties of Bio-Composite Packaging Materials Developed Using Cowpea Lignocellulosic Sidestream as a Filler
- 2023Agricultural sidestream as a biomaterial commodity: opportunities and challenges
- 2023Faba bean lignocellulosic sidestream as a filler for the development of biodegradable packagingcitations
- 2022Green polymers filaments for 3D-printingcitations
- 2022Recycling of 3D Printable Thermoplastic Cellulose-Compositecitations
- 2022Novel Cellulose based Composite Material for Thermoplastic processing
- 2022Poly(butylene succinate-co-adipate)/poly(hydroxybutyrate) blend films and their thermal, mechanical and gas barrier propertiescitations
- 2022Green polymer filaments for 3D printingcitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Valorisation de la ”partie lignine” des effluents de prétraitement de biomasse forestière : élaboration et caractérisation d’agrocomposites
- 2019Valorization of Kraft Lignin and Corn Cob by-Products into PLA-Matrix based Biocomposites: Characterisation of Injected-moulded Specimens
- 2018X-ray microtomography applied to bio-based composites made of by-products from forest and agricultural industries
- 2018X-ray microtomography applied to bio-based composites made of by-products from forest and agricultural industries
Places of action
Organizations | Location | People |
---|
document
Novel Cellulose based Composite Material for Thermoplastic processing
Abstract
Novel solutions using renewable materials are needed to tackle sustainability issues in industry. Totally cellulose-based composites, suitable for thermoplastic processing are introduced in this paper. The polymer matrix was a thermoplastic cellulose ester, Thermocell. Composites reinforcing fibres consisted of microcellulose, bleached softwood kraft pulp fibres, or long regenerated viscose fibres. The latest allowed to improve composites mechanical performance, especially at 20 wt-% loading. In the extrusion process, fibres oriented along processing direction, giving hopes for a future use in extrusion type additive manufacturing (AM). However, further developments of the AM system are required to print this material. With 20 wt-% microcellulose, the composite could be 3D printed using a fused granular fabrication process. Improved microcellulose dispersion was achieved with 2 wt-% tall-oil fatty acid lignin ester or cellulose ester ether additives. Wood-based additives also helped to decrease the internal porosity, leading to better mechanical performance of 3D printed materials.