People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skovhus, Torben Lund
VIA University College
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (47/47 displayed)
- 2023The effectiveness of cathodic protection (CP) on microbiologically influenced corrosion (MIC) control
- 2023Development of a model system to investigate the effects of surface roughness and media on marine biofilm formation and microbiologically influenced corrosion
- 2023Microbiologically Influenced Corrosion (MIC) in the Energy Sector: Interesting Learnings from the North Sea
- 2023Bibliometric Analysis on Microbiologically Influenced Corrosion in Oil and Gas Systems
- 2022EUROCORR: Effects of surface roughness on anaerobic marine biofilm formation and microbiologically-influenced corrosion of UNS G10180 carbon steel
- 2022The effects of surface roughness on anaerobic marine biofilm formation and microbiologically-influenced corrosion of UNS G10180 carbon steel
- 2022Learnings from Failure Investigations of Microbiologically Influenced Corrosion (MIC) in the North Sea Oil and Gas Production
- 2022RMF: Microbiologically-influenced corrosion (MIC): Development of a model system to investigate the role of biofilm communities within MIC and their control using industrial biocides
- 2022European microbiologically influenced corrosion network (EURO-MIC) : new paths for science, sustainability and standards.
- 2022The Urgent Need of Bridging Our Extensive Knowledge to the Renewable Energy Sector: Conducting Failure Investigation of Microbiologically Influenced Corrosion (MIC) in the North Sea
- 2022Microbial Degradation of Complex Organic Compounds in a Danish Drinking Water Pipeline Distribution System
- 2022MSC: Effects of surface roughness on anaerobic marine biofilm formation and microbiologically influenced corrosion of UNS G10180 carbon steel
- 2022Optimizing Corrosion Mitigation Costs Using Failure Analysis
- 2022Failure Investigation of Microbiologically Influenced Corrosion (MIC) in the North Sea Oil and Gas Production
- 2022State-of-the-art Failure Analysis of Microbiologically Influenced Corrosion (MIC) in the Energy Sector – Interesting Learnings from the North Sea
- 2022Failure Analysis of Microbiologically Influenced Corrosion (MIC) in the Oil and Gas industry – Learnings from the North Sea
- 2022NCC18: Failure Investigation of Microbiologically Influenced Corrosion (MIC) in the North Sea Oil and Gas Production
- 2022State-of-the-art Failure Analysis of Microbiologically Influenced Corrosion (MIC) in the Energy industry – Some Learnings from the North Sea
- 2022Importance of the Multiple Lines of Evidence (MLOE) approach in Diagnosing Microbiologically Influenced Corrosion (MIC)
- 2022Failure Analysis and Mitigation of Microbiologically Influenced Corrosion (MIC) in the Energy industry – Interesting Learnings from the North Sea
- 2021The Clean Biocide Project Halophilic plant extracts for prevention of microbiologically influenced corrosion (MIC)
- 2021Microbiologically-influenced corrosion (MIC): Development of a model system to investigate the role of biofilm communities within MIC and their control using industrial biocides
- 2021Review of Current Gaps in Microbiologically Influenced Corrosion (MIC) Failure Investigations in Alberta’s Oil and Gas Sector
- 2021The CLEAN BIOCIDE project: Halophilic plant extracts as natural corrosion inhibitors and biocides for oil field application
- 2021The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditionscitations
- 2021Using Failure Analysis to Optimize Corrosion Mitigation Costs
- 2021Time to Agree: The Efforts to Standardize Molecular Microbiological Methods (MMM) For Detection of Microorganisms in Natural and Engineered Systems
- 2021Failure Investigation of Microbiologically Influenced Corrosion in Alberta’s Oil and Gas Upstream Pipeline Operations – Trends and Gaps
- 2021Laboratory investigation of biocide treated waters to inhibit biofilm growth and reduce the potential for MIC
- 2021Environmental conditions impact the corrosion layer composition of methanogen induced microbiologically influenced corrosion (MI-MIC)
- 2021Introducing Failure Analysis of Microbiologically Influenced Corrosion – From biofilms to asset integrity management
- 2021Clean Biocide Project: Natural Corrosion Inhibitors Halophilic Plant Extracts for Biofilm Mitigation
- 2021From biofilms to asset integrity management: A transdisciplinary perspective of Microbiologically Influenced Corrosion (MIC)
- 2021Microbiological Tests Used to Diagnose Microbiologically Influenced Corrosion (MIC) in Failure Investigations
- 2021Failure Analysis of Microbiologically Influenced Corrosion
- 2020Integration of State-of-the-Art Methods for Assessing Possible Failures due to Microbiologically Influenced Corrosion
- 2020Current state-of-the-art industrial research on Microbiologically Influenced Corrosion (MIC)
- 2020Corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) are impact by environmental conditions
- 2020Bridging the gap between inspection strategies and applied MIC research in the Oil & Gas industry
- 2019Pipeline Failure Investigation: Is it MIC?
- 2018Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry - Past, Present and Future
- 2017Investigation of Amourphous Deposits and Potential Corrosion Mechanisms in Offshore Water Injection Systems
- 2017Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry
- 2017Application of natural antimicrobial compounds for reservoir souring and MIC prevention in offshore oil and gas production systems
- 2017Corrosion resistance of steel fibre reinforced concrete - A literature reviewcitations
- 2016Corrosion resistance of steel fibre reinforced concrete – a literature review
- 2015Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry
Places of action
Organizations | Location | People |
---|
document
Importance of the Multiple Lines of Evidence (MLOE) approach in Diagnosing Microbiologically Influenced Corrosion (MIC)
Abstract
Microbiologically influenced corrosion (MIC) is a problem in the oil and gas industry and many other water sectors. However, improper diagnosis of MIC is common, and the fallout of a misdiagnosis can be expensive. Biocides and pigging could be used when they aren’t needed, or MIC is not diagnosed, increasing severity and mitigation costs in the future.<br/>MIC does not have a single defining characteristic. However, in the industry, MIC is sometimes diagnosed based on a few or a single variable. Commonly, the presence of a specific species of sulfate-reducing bacteria (SRB) water or the presence of pitting on coupons [1]. However, MIC can be caused by other microorganisms and doesn’t necessarily cause pitting. Conversely, the presence of SRB doesn’t necessarily cause MIC on its own, and other mechanisms exist that cause pitting corrosion.<br/>In the laboratory, a biofilm reactor was used to test the efficacy of a halophyte-based biocide against a mixed microbial culture. The biocide was added after 3 weeks, but after one week, the microbial community adapted, and the continuously monitored H2S increased to pre-biocide-exposure levels. However, no new pitting corrosion occurred after the biocide exposure – was this MIC?<br/>Using 16S rRNA gene sequencing, H2S concentration, coupon surface topography, and coupon weight loss, this poster presentation highlights the importance of the Multiple Lines of Evidence (MLOE) approach in diagnosing MIC.<br/><br/>[1] A. A. Abilio, J. Wolodko, R. B. Eckert, and T. L. Skovhus, “Review and Gap Analysis of MIC Failure Investigation Methods in Alberta’s Oil and Gas Sector,” in Failure analysis of microbiologically influenced corrosion, 1st ed., R. B. Eckert and T. L. Skovhus, Eds. CRC Press, 2021, pp. 25–66.