People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Ana L.
Universidade Católica Portuguesa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Adenosine-loaded silk fibroin aerogel particles for wound healing
- 2022Opening new avenues for bioceramicscitations
- 2021New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofiberscitations
- 2021High efficient strategy for the production of hydroxyapatite/silk sericin nanocompositescitations
- 2020Hydroxyapatite/sericin compositescitations
- 2020High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites
- 2020Hydroxyapatite/sericin composites:a simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization processcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approachcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO 2 -based approachcitations
- 2018Combinatory approach for developing silk fibroin scaffolds for cartilage regenerationcitations
- 2017Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applicationscitations
- 2017Silk-based anisotropical 3D biotextiles for bone regenerationcitations
- 2017Core-shell silk hydrogels with spatially tuned conformations as drug-delivery systemcitations
- 2016Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
- 2013Evaluation of novel 3D architectures based on knitting technologies for engineering biological tissues
- 2012Aligned silk-based 3-D architectures for contact guidance in tissue engineeringcitations
- 2009Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffoldscitations
- 2005Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterialscitations
- 2004Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based processcitations
- 2003Biomimetic coating of starch based polymeric foams produced by a calcium silicate based methodologycitations
- 2003Bi-composite sandwich moldingscitations
- 2003Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structurescitations
- 2001Sodium silicate gel induced self-mineralization of different compact and porous polymeric structurescitations
Places of action
Organizations | Location | People |
---|
document
Adenosine-loaded silk fibroin aerogel particles for wound healing
Abstract
The healing process of an injury comprises a series of steps (haemostasis, inflammation and proliferation/maturation). Exudate from wounds is a natural response to heal. However, an excess production can compromise and delay the inflammatory phase, resulting in chronicity. Novel biocompatible, biodegradable and adaptable dressings are sought to promote tissue regeneration, prevent infection and control inflammation. Aerogels are nanostructured dry materials with high porosity, large surface and low bulk density. Bio-based aerogels, from natural polymer sources, can provide advanced performance for wound healing; also, they can act as carriers for bioactive compounds.[1] Adenosine (ADO) is a nucleoside that is expected to trigger the healing process of chronic wounds, promoting angiogenesis and regeneration.[2] Silk fibroin (SF) aerogels can act as promising carriers of bioactive molecules while supporting cell proliferation. Hereupon, SF aerogels loaded with Adenosine were developed in the form of particles for wound healing applications, using supercritical CO2 technology.