People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palmolahti, Lauri Johannes
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
- 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Depositioncitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applications
- 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO2citations
Places of action
Organizations | Location | People |
---|
document
Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
Abstract
Titanium dioxide (TiO<sub>2</sub>) is an ideal material of choice for protective photoelectrode coatings thanks to its intrinsic chemical stability, transparency to visible light and defect-mediated charge transfer properties. Both amorphous and crystalline TiO<sub>2</sub> can serve as a protection layer for semiconductor materials that are inherently unstable under photoelectrochemical (PEC) conditions. [1] Ti<sup>3+</sup> defects within amorphous TiO<sub>2</sub> (am-TiO<sub>2</sub>) can enable polaron hopping-mediated charge carrier transport through a protective am-TiO<sub>2</sub> photoelectrode coating [2]. Crystalline TiO<sub>2</sub> (c-TiO<sub>2</sub>) can also exhibit sufficient charge carrier transport properties in case of a suitable band alignment with the photoelectrode [3]. Post-deposition annealing (PDA) treatments that are required for optimal coating performance should be performed at low enough temperatures to prevent growth of interfacial oxides that are detrimental to the charge transfer [4]. The choices of atomic layer deposition (ALD) process parameters are interrelated with the required PDA treatments and photoelectrode coating performance.<br/><br/>Our most recent work [5] examines Ti<sup>3+</sup>-rich am.-TiO<sub>2</sub> thin films grown by ALD at growth temperature of 100–200 °C using tetrakis(dimethylamido)titanium(IV) (TDMAT) and H<sub>2</sub>O as the precursors. X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations allowed us to identify structural disorder-induced penta- and heptacoordinated Ti<sup>4+</sup> ions (Ti<sub>5/7c</sub><sup>4+</sup>), which are interrelated to the formation of Ti<sup>3+</sup> defects in am.-TiO<sub>2</sub>. Furthermore, experimental and computational results support the formation of Ti<sup>3+</sup> defects in am.-TiO<sub>2</sub> structure without releasing oxygen, i.e., simultaneous formation of oxygen vacancies and interstitial peroxo species leading to defective but stoichiometric am.-TiO<sub>2</sub>. Upon PDA in air, Ti<sup>3+</sup>-rich am.-TiO<sub>2</sub> thin film crystallizes directly into rutile (grain size <1 µm) at unprecedentedly low temperature of 250 °C. In addition to benefits as photoelectrode coating, the low-temperature synthesis enables photocatalytic applications involving temperature sensitive materials.<br/>1. D. Bae, B. Seger, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, “Strategies for Stable Water Splitting via Protected Photoelectrodes,” Chem. Soc. Rev. 46, pp. 1933–1954, 2017<br/>2. P. Nunez, M. H. Richter, B. D. Piercy, C. W. Roske, M. Cabán-Acevedo, M. D. Losego, S. J. Konezny, D. J. Fermin, S. Hu, B. S. Brunschwig, N. S. Lewis, “Characterization of Electronic Transport through Amorphous TiO<sub>2</sub> Produced by Atomic Layer Deposition,” J. Phys. Chem. C 123, pp. 20116–20129, 2019<br/>3. B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, I. Chorkendorff, “Crystalline TiO<sub>2</sub>: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119, pp. 15019–15027, 2015<br/>4. J. Saari, H. Ali-Löytty, M. Honkanen, A. Tukiainen, K. Lahtonen, M. Valden, “Interface Engineering of TiO<sub>2</sub> Photoelectrode Coatings Grown by Atomic Layer Deposition on Silicon,” ACS Omega 6, pp. 27501–27509, 2021<br/>5. J. Saari, H. Ali-Löytty, M. M. Kauppinen, M. Hannula, R. Khan, K. Lahtonen, L. Palmolahti, A. Tukiainen, H. Grönbeck, N. V. Tkachenko, M. Valden, “Tunable Ti<sup>3+</sup>-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO<sub>2</sub>,” J. Phys. Chem. C 126, pp. 4542–4554, 2022<br/>