Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palmolahti, Lauri Johannes

  • Google
  • 5
  • 14
  • 132

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coatingcitations
  • 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Deposition25citations
  • 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO248citations
  • 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applicationscitations
  • 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO259citations

Places of action

Chart of shared publication
Valden, Mika
5 / 37 shared
Ali-Löytty, Harri
5 / 44 shared
Hannula, Markku
5 / 15 shared
Lahtonen, Kimmo
5 / 38 shared
Grönbeck, Henrik
2 / 8 shared
Tukiainen, Antti
3 / 23 shared
Kauppinen, Minttu M.
1 / 1 shared
Saari, Jesse
5 / 16 shared
Kauppinen, Minttu Maria
1 / 1 shared
Khan, Ramsha
1 / 13 shared
Tkachenko, Nikolai V.
1 / 19 shared
Bhuskute, Bela D.
2 / 4 shared
Ulkuniemi, Riina
1 / 1 shared
Nyyssönen, Tuomo
1 / 12 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Valden, Mika
  • Ali-Löytty, Harri
  • Hannula, Markku
  • Lahtonen, Kimmo
  • Grönbeck, Henrik
  • Tukiainen, Antti
  • Kauppinen, Minttu M.
  • Saari, Jesse
  • Kauppinen, Minttu Maria
  • Khan, Ramsha
  • Tkachenko, Nikolai V.
  • Bhuskute, Bela D.
  • Ulkuniemi, Riina
  • Nyyssönen, Tuomo
OrganizationsLocationPeople

document

Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating

  • Valden, Mika
  • Ali-Löytty, Harri
  • Palmolahti, Lauri Johannes
  • Hannula, Markku
  • Lahtonen, Kimmo
  • Grönbeck, Henrik
  • Tukiainen, Antti
  • Kauppinen, Minttu M.
  • Saari, Jesse
Abstract

Titanium dioxide (TiO<sub>2</sub>) is an ideal material of choice for protective photoelectrode coatings thanks to its intrinsic chemical stability, transparency to visible light and defect-mediated charge transfer properties. Both amorphous and crystalline TiO<sub>2</sub> can serve as a protection layer for semiconductor materials that are inherently unstable under photoelectrochemical (PEC) conditions. [1] Ti<sup>3+</sup> defects within amorphous TiO<sub>2</sub> (am-TiO<sub>2</sub>) can enable polaron hopping-mediated charge carrier transport through a protective am-TiO<sub>2</sub> photoelectrode coating [2]. Crystalline TiO<sub>2</sub> (c-TiO<sub>2</sub>) can also exhibit sufficient charge carrier transport properties in case of a suitable band alignment with the photoelectrode [3]. Post-deposition annealing (PDA) treatments that are required for optimal coating performance should be performed at low enough temperatures to prevent growth of interfacial oxides that are detrimental to the charge transfer [4]. The choices of atomic layer deposition (ALD) process parameters are interrelated with the required PDA treatments and photoelectrode coating performance.<br/><br/>Our most recent work [5] examines Ti<sup>3+</sup>-rich am.-TiO<sub>2</sub> thin films grown by ALD at growth temperature of 100–200 °C using tetrakis(dimethylamido)titanium(IV) (TDMAT) and H<sub>2</sub>O as the precursors. X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations allowed us to identify structural disorder-induced penta- and heptacoordinated Ti<sup>4+</sup> ions (Ti<sub>5/7c</sub><sup>4+</sup>), which are interrelated to the formation of Ti<sup>3+</sup> defects in am.-TiO<sub>2</sub>. Furthermore, experimental and computational results support the formation of Ti<sup>3+</sup> defects in am.-TiO<sub>2</sub> structure without releasing oxygen, i.e., simultaneous formation of oxygen vacancies and interstitial peroxo species leading to defective but stoichiometric am.-TiO<sub>2</sub>. Upon PDA in air, Ti<sup>3+</sup>-rich am.-TiO<sub>2</sub> thin film crystallizes directly into rutile (grain size &lt;1 µm) at unprecedentedly low temperature of 250 °C. In addition to benefits as photoelectrode coating, the low-temperature synthesis enables photocatalytic applications involving temperature sensitive materials.<br/>1. D. Bae, B. Seger, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, “Strategies for Stable Water Splitting via Protected Photoelectrodes,” Chem. Soc. Rev. 46, pp. 1933–1954, 2017<br/>2. P. Nunez, M. H. Richter, B. D. Piercy, C. W. Roske, M. Cabán-Acevedo, M. D. Losego, S. J. Konezny, D. J. Fermin, S. Hu, B. S. Brunschwig, N. S. Lewis, “Characterization of Electronic Transport through Amorphous TiO<sub>2</sub> Produced by Atomic Layer Deposition,” J. Phys. Chem. C 123, pp. 20116–20129, 2019<br/>3. B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, I. Chorkendorff, “Crystalline TiO<sub>2</sub>: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119, pp. 15019–15027, 2015<br/>4. J. Saari, H. Ali-Löytty, M. Honkanen, A. Tukiainen, K. Lahtonen, M. Valden, “Interface Engineering of TiO<sub>2</sub> Photoelectrode Coatings Grown by Atomic Layer Deposition on Silicon,” ACS Omega 6, pp. 27501–27509, 2021<br/>5. J. Saari, H. Ali-Löytty, M. M. Kauppinen, M. Hannula, R. Khan, K. Lahtonen, L. Palmolahti, A. Tukiainen, H. Grönbeck, N. V. Tkachenko, M. Valden, “Tunable Ti<sup>3+</sup>-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO<sub>2</sub>,” J. Phys. Chem. C 126, pp. 4542–4554, 2022<br/>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • grain
  • grain size
  • theory
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • semiconductor
  • chemical stability
  • Silicon
  • density functional theory
  • titanium
  • annealing
  • interfacial
  • interstitial
  • additive manufacturing
  • atomic layer deposition