Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khlifi, Imad

  • Google
  • 6
  • 8
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Investigation of different discrete modeling strategies to mimic microstructural aspects that influence the fracture energy of refractory materials3citations
  • 2019Investigation of microstructure-property relantionships of magnesia-hercynite refractory composites by a refined digital image correlation technique40citations
  • 2019Optimisation of optical methods for strain field measurements dedicated to the characterisation of the fracture behaviour of refractories : Application to magnesia based materialscitations
  • 2019Optimisation of optical methods for strain field measurements dedicated to the characterisation of the fracture behaviour of refractories : Application to magnesia based materials ; Optimisation des méthodes optiques de mesure de champs de déformation pour la caractérisation du comportement à rupture des réfractaires : Application aux matériaux à base de magnésiecitations
  • 2018Detection of cracks in refractory materials by an enhanced digital image correlation technique28citations
  • 2017Improvement of Digital Image Correlation for the analysis of the fracture behaviour of Refractoriescitations

Places of action

Chart of shared publication
Huger, Marc
4 / 34 shared
Emam, Sacha
1 / 3 shared
Asadi, Farid
1 / 3 shared
Doumalin, Pascal
4 / 15 shared
André, Damien
1 / 8 shared
Dupré, Jean-Christophe
3 / 4 shared
Pop, Octavian
3 / 14 shared
Belrhiti, Younès
2 / 10 shared
Chart of publication period
2022
2019
2018
2017

Co-Authors (by relevance)

  • Huger, Marc
  • Emam, Sacha
  • Asadi, Farid
  • Doumalin, Pascal
  • André, Damien
  • Dupré, Jean-Christophe
  • Pop, Octavian
  • Belrhiti, Younès
OrganizationsLocationPeople

thesis

Optimisation of optical methods for strain field measurements dedicated to the characterisation of the fracture behaviour of refractories : Application to magnesia based materials

  • Khlifi, Imad
Abstract

Magnesia-spinel and magnesia-hercynite bricks destined for thermal shock applications in cement rotary kilns often show an enhanced crack propagation resistance due to an engineered microstructure design. In these materials, microcrack networks resulting from the thermal expansion mismatch between magnesia matrix and spinel/hercynite aggregates promote the activation of energy dissipating mechanisms within the so-called Fracture Process Zone (FPZ) during loading. In this research, the fracture behaviour of magnesia-based model materials was investigated by coupling a refined Digital Image Correlation method (2P-DIC) with the Wedge Splitting Test (WST). The coupling of these advanced characterisation methods has proven to be very effective in measuring important fracture parameters accurately and in highlighting characteristic fracture mechanisms, such as crack-branching. The investigation of microstructure-property relationships underlined the impact of thermally induced microcracks on the thermomechanical behaviour of magnesia-spinel and magnesia-hercynite materials. Despite the rather similar elastic and dilatometric properties of spinel and hercynite single constituents, peculiar microcracking patterns were observed, especially in magnesia-hercynite. In fact, extensive diffusion between magnesia and hercynite during sintering led to the formation of spinel solid solutions around hercynite aggregates. As a result of thermal expansion mismatch with magnesia, these solid solutions contributed to creating numerous fine microcracks confined within the diffusion zone. Initially present within the microstructure, microcrack networks promote an increase of the specific fracture energy during WST experiments. Moreover, the analysis of strain fields measured by 2P-DIC revealed extensive crack branching for magnesia-hercynite materials. In essence, 2P-DIC and WST measurements showed that microcrack networks promoted the development of the FPZ, which in turn induced higher fracture energies. In a refined R-curve approach, effective fracture energies were calculated using crack lengths measured by 2P-DIC, which helped establish strong links between FPZ development and an enhanced crack propagation resistance. The tendencies observed at room temperature during WST experiments were confirmed during thermal cycling experiments using a novel thermal shock device.

Topics
  • microstructure
  • experiment
  • crack
  • cement
  • thermal expansion
  • activation
  • sintering