Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nadtochiy, A.

  • Google
  • 2
  • 12
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Photovoltaic Characterization of Si and SiGe Surfaces Sonochemically Treated in Dichloromethanecitations
  • 2017Mid-IR optical properties of silicon doped InP18citations

Places of action

Chart of shared publication
Podolian, A.
1 / 1 shared
Shmid, V.
1 / 1 shared
Korotchenkov, O.
1 / 1 shared
Semenko, M.
1 / 1 shared
Iazykov, Dmytro
1 / 1 shared
Semenova, Elizaveta
1 / 15 shared
Norrman, Kion
1 / 40 shared
Pryds, Nini
1 / 133 shared
Panah, Mohammad Esmail Aryaee
1 / 6 shared
Zhukov, A. E.
1 / 4 shared
Lavrinenko, Andrei V.
1 / 98 shared
Han, Li
1 / 20 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Podolian, A.
  • Shmid, V.
  • Korotchenkov, O.
  • Semenko, M.
  • Iazykov, Dmytro
  • Semenova, Elizaveta
  • Norrman, Kion
  • Pryds, Nini
  • Panah, Mohammad Esmail Aryaee
  • Zhukov, A. E.
  • Lavrinenko, Andrei V.
  • Han, Li
OrganizationsLocationPeople

document

Photovoltaic Characterization of Si and SiGe Surfaces Sonochemically Treated in Dichloromethane

  • Podolian, A.
  • Shmid, V.
  • Korotchenkov, O.
  • Semenko, M.
  • Iazykov, Dmytro
  • Nadtochiy, A.
Abstract

Процеси рекомбінації та захоплення електронів і дірок через поверхневі центри рекомбінації та захоплення суттєво впливають на ефективність різних фотоелектричних пристроїв. Через це у процесі виробництва таких пристроїв значну увагу приділяють пасивації поверхонь. Різні аспекти пасивації поверхні Si та SiGe достатньо широко розглянуті в літературі. Зокрема, показано, що сонохімічна обробка поверхні, наприклад. в хлороформі (CHCl3), може значно покращити фотоелектричний відгук. У даній роботі показано, що й інший карбон-місткий реакційноздатний поверхневий травник, дихлорметан (CH2Cl2), використаний у сонохімічному реакторі, може ефективно впливати на величину поверхневої фото-ЕРС в зразках Si та SiGe. Дослідження рентгенівської дифракції показали, що шар сплаву Si-Ge утворює тверді розчини Si в Ge (що містить приблизно 59 ат. % Si) та Ge в Si (наближено 90 ат. % Si). У монокристалічному Si отримано збільшення на порядок величини сигналу фото-ЕРС із трохи затягнутою кривою її релаксації. В SiGe це збільшення фотовідгуку складає біля 50 %. На відміну від Si, сонохімічна обробка поверхні SiGe веде до прискорення короткочасної компоненти та уповільнення довготривалої складової сигналу поверхневої фото-ЕРС, що описується подвійною експоненціально спадаючою функцією. Оскільки дихлорметан виступає в якості джерела вуглецю, можна припустити, що звільнений при сонохімічній обробці вуглець ефективно пасивує вільні кремнієві зв’язки. На наш погляд, сонохімічна обробка має потенціал використання для пасивації поверхонь у виробництві сонячних батарей на основі Si та SiGe. It is well known that the near-surface recombination and trapping of photoexcited free carriers significantly affect the photovoltaic performance. Passivation techniques are therefore in great demand for current photovoltaic technologies. Different aspects of the surface passivation in Si and SiGe were widely addressed. It was particularly concluded that sonochemical surface treatments, e.g. in chloroform (CHCl3), can significantly improve the photovoltaic response. It is shown in this work that another reactive surface etchant containing carbon, dichloromethane (CH2Cl2), placed into the sonochemical reactor can effectively modify the surface photovoltaic response of Si and SiGe surfaces. X-ray diffraction studies revealed that the Si-Ge alloy layer exhibits solid solutions of Si in Ge (approximately 59 % of Si atoms) and Ge in Si (approximately 90 % of Si atoms). An order of magnitude larger photovoltaic signal, which is accompanied by slightly prolonged decay times, is observed in single crystal Si. A 50 % increase in the photovoltaic amplitude is reproduced in SiGe. In contrast to Si, sonochemical treatment of the SiGe surface tends to speed up the short-term component and slow down the long-term component of the double-exponential surface photovoltage signal. As dichloromethane acts as a carbon source, it can be suggested that sonochemically decomposed carbon atoms can effectively passivate silicon dangling bonds. We believe this sonochemical treatment step can be used for the surface passivation in manufacturing Si- and SiGe-based solar cells.

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • Carbon
  • x-ray diffraction
  • reactive
  • Silicon