Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Habert, Marie-Odile

  • Google
  • 2
  • 26
  • 126

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Predicting progression to Alzheimer’s disease from clinical and imaging data: a reproducible studycitations
  • 2018Early cognitive, structural and microstructural changes in c9orf72 presymptomatic carriers before 40 years of age126citations

Places of action

Chart of shared publication
Epelbaum, Stephane
1 / 1 shared
Samper-Gonzalez, Jorge
1 / 1 shared
Colliot, Olivier
2 / 3 shared
Burgos, Ninon
1 / 2 shared
Evgeniou, Theodoros
1 / 1 shared
Bottani, Simona
1 / 1 shared
Martinaud, Olivier
1 / 1 shared
Houot, Marion
1 / 1 shared
Hannequin, Didier
1 / 1 shared
Sayah, Sabrina
1 / 1 shared
Levy, Richard
1 / 1 shared
Wen, Junhao
1 / 1 shared
Caroppo, Paola
1 / 1 shared
Rinaldi, Daisy
1 / 1 shared
Ber, Isabelle Le
1 / 1 shared
Pasquier, Florence
1 / 1 shared
Study, Prevdemals
1 / 1 shared
Brice, Alexis
1 / 1 shared
Dubois, Bruno
1 / 2 shared
Bertrand, Anne
1 / 3 shared
Durrleman, Stanley
1 / 1 shared
Couratier, Philippe
1 / 1 shared
Fontanella, Sabrina
1 / 1 shared
Routier, Alexandre
1 / 2 shared
Camuzat, Agnès
1 / 1 shared
Fournier, Clémence
1 / 1 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Epelbaum, Stephane
  • Samper-Gonzalez, Jorge
  • Colliot, Olivier
  • Burgos, Ninon
  • Evgeniou, Theodoros
  • Bottani, Simona
  • Martinaud, Olivier
  • Houot, Marion
  • Hannequin, Didier
  • Sayah, Sabrina
  • Levy, Richard
  • Wen, Junhao
  • Caroppo, Paola
  • Rinaldi, Daisy
  • Ber, Isabelle Le
  • Pasquier, Florence
  • Study, Prevdemals
  • Brice, Alexis
  • Dubois, Bruno
  • Bertrand, Anne
  • Durrleman, Stanley
  • Couratier, Philippe
  • Fontanella, Sabrina
  • Routier, Alexandre
  • Camuzat, Agnès
  • Fournier, Clémence
OrganizationsLocationPeople

document

Predicting progression to Alzheimer’s disease from clinical and imaging data: a reproducible study

  • Epelbaum, Stephane
  • Habert, Marie-Odile
  • Samper-Gonzalez, Jorge
  • Colliot, Olivier
  • Burgos, Ninon
  • Evgeniou, Theodoros
  • Bottani, Simona
Abstract

Various machine learning approaches have been developed for predicting progression to Alzheimer’s disease (AD) in patients with mild cognitive impairment (MCI) from MRI and PET data. Objective comparison of these approaches is nearly impossible because of differences at all steps, fromdata management to image processing and evaluation procedures. Moreover, with a few exceptions, these papers rarely compare their results to that obtained with clinical/cognitive data only, a critical point to demonstrate the practical utility of neuroimaging in this context. We previously proposed a framework for the reproducible evaluation of ML algorithms for AD classification. This framework was applied to AD classification using unimodal neuroimaging data (T1 MRI and FDG PET). Here, we extend our previous workto the combination of multimodal clinical and neuroimaging data for predicting progression to AD among MCI patients.All the code is publicly available at: https://github.com/aramis-lab/AD-ML.

Topics
  • impedance spectroscopy
  • machine learning