Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Polyvanyi, Anton

  • Google
  • 2
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Application of Wear-Resistant Nanostructures Formed by Ion Nitridizing & Electrospark Alloying for Protection of Rolling Bearing Seat Surfacescitations
  • 2021New Method for Nitrocarburizing Steel Parts2citations

Places of action

Chart of shared publication
Gaponova, Oksana
1 / 1 shared
Konoplianchenko, Ievgen
1 / 4 shared
Martsynkovskyy, Vasyl
1 / 1 shared
Melnyk, Viktor
1 / 1 shared
Vlasovets, Vitaliy
1 / 1 shared
Dovzhyk, Mykhaylo
1 / 1 shared
Zahorulko, Andriy
1 / 1 shared
Tarelnyk, Viacheslav
1 / 6 shared
Tarelnyk, Nataliia
1 / 5 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Gaponova, Oksana
  • Konoplianchenko, Ievgen
  • Martsynkovskyy, Vasyl
  • Melnyk, Viktor
  • Vlasovets, Vitaliy
  • Dovzhyk, Mykhaylo
  • Zahorulko, Andriy
  • Tarelnyk, Viacheslav
  • Tarelnyk, Nataliia
OrganizationsLocationPeople

article

Application of Wear-Resistant Nanostructures Formed by Ion Nitridizing & Electrospark Alloying for Protection of Rolling Bearing Seat Surfaces

  • Polyvanyi, Anton
Abstract

The paper analyzes the works devoted to solving problems affecting the bearing life of rolling bearings (RB) and to revealing reserves for its increase. There proposed a new technology for forming a protective coating on the shaft bearing journal or on the surface of a sleeve pressed thereon, which consists in the use of a combined technology comprising a process for stage-by-stage aluminizing by the method of electrospark alloying (A ESA ) followed by a process of ion nitriding (IN). Such a coating has a 100% continuity, the greatest thickness of the increased hardness zone of 300 µm, the surface microhardness of 7700 MPa, and the roughness (Ra) after non-abrasive ultrasonic finishing (NAUF) of 0.5 µm, The results of the X-ray microanalysis indicate that an increased content of aluminum is observed in the surface layer at the distance of up to 40 µm after the stage-by-stage AESA process. The research results have shown that in order to restore the shaft bearing journal neck surface layer hardness, which had been lost because of the repair work, the step-by-step AESA technology is more preferable. Thus, when removing the surface layer to a depth of 0.15 mm and subsequently carburizing by the method of electrospark alloying (C ESA ), the maximum microhardness of the surface layer is 7250 MPa, and the thickness of the zone of the increased hardness is 150 µm, At subsequently processing by the AESA method, these quality parameters of the surface layer are, respectively, 7350 MPa and 210 µm. The use of the NAUF method, both after C ESA and AESA processes, makes it possible to reduce the surface roughness up to Ra = 0.5 µm.

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • hardness
  • ultrasonic
  • forming