Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhuskute, Bela

  • Google
  • 3
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Deposition1citations
  • 2022Plasmonic Ag–Au/TiO2 nanocomposites for photocatalytic applicationscitations
  • 2017Photo-electrochemical and spectroscopic investigation of ALD grown TiO2citations

Places of action

Chart of shared publication
Valden, Mika
3 / 37 shared
Ali-Löytty, Harri
3 / 44 shared
Tukiainen, Antti
1 / 23 shared
Saari, Jesse
1 / 16 shared
Salminen, Turkka
1 / 31 shared
Honkanen, Mari Hetti
1 / 59 shared
Chart of publication period
2024
2022
2017

Co-Authors (by relevance)

  • Valden, Mika
  • Ali-Löytty, Harri
  • Tukiainen, Antti
  • Saari, Jesse
  • Salminen, Turkka
  • Honkanen, Mari Hetti
OrganizationsLocationPeople

document

Plasmonic Ag–Au/TiO2 nanocomposites for photocatalytic applications

  • Salminen, Turkka
  • Valden, Mika
  • Ali-Löytty, Harri
  • Bhuskute, Bela
  • Honkanen, Mari Hetti
Abstract

Harnessing entire solar spectrum and converting it into useful solar fuels are the key steps in overcoming the global energy demand. Here, an attempt is made to utilize the visible light photons for photocatalytic hydrogen production by deposition of plasmonic nanostructures on TiO2 (P25). Surface plasmon resonance property of these metallic nanoparticles essentially increases the visible light absorption in different region of solar spectrum [1, 2]. Deposition of plasmonic metal nanoparticles on TiO2 (P25) introduces extra energy levels in the bandgap of semiconductor and enhances excellent electrical and unique optical properties [3, 4]. <br/><br/>In this present work, the optimization of Ag and Au photodeposition parameters is employed to obtain better solar to hydrogen efficiency compared to TiO2 (P25) nanoparticles. The results show that the metal deposition order predominantly affects the H2 evolution reaction. The bimetallic nanoparticles with Ag@Au/TiO2 (P25) show the best photocatalytic efficiency compared to monometallic TiO2 and Au@Ag/TiO2 (P25). The highest hydrogen production rate of 0.25 µmol/h is achieved with Ag@Au/TiO2 (P25) with 40 min photodeposition of gold and 20 min photodeposition of silver on TiO2 nanoparticle surface.<br/><br/>References:<br/>1) Tian, Y., &amp; Tatsuma, T. (2004). Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO 2, 1810–1811.<br/>2) Tanaka, A., Sakaguchi, S., Hashimoto, K., &amp; Kominami, H. (2012). Preparation of Au / TiO 2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. https://doi.org/10.1021/cs3006499<br/>3) Hirakawa, T., Kamat, P. V, Uni, V., &amp; Dame, N. (2005). Charge Separation and Catalytic Activity of Ag @ TiO 2 Core - Shell Composite Clusters under UV - Irradiation, (37), 3928–3934. https://doi.org/10.1021/ja042925a<br/>4) Zhou, N., Polavarapu, L., Gao, N., Pan, Y., Yuan, P., &amp; Xu, Q. (2013). TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation †. https://doi.org/10.1039/c3nr00517h<br/><br/><br/>

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • impedance spectroscopy
  • surface
  • cluster
  • silver
  • semiconductor
  • gold
  • Hydrogen