People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nunes, Sandra
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2022Multi-level study on UHPFRC incorporating ECatcitations
- 2021Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cyclescitations
- 2021Durability of an UHPC containing spent equilibrium catalystcitations
- 2020Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concretecitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2018Durability of fibre reinforced cementitious composites
- 2018Alkali-activated cement using slags and fly ash
- 2014Linking fresh and durability properties of paste to SCC mortarcitations
- 2009Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF)citations
Places of action
Organizations | Location | People |
---|
document
Alkali-activated cement using slags and fly ash
Abstract
Alkali Activated Cements (AAC) are a very convenient alternative to common binders as waste materials like slag and fly ash are included in their production. In this paper, a response surface method is used to optimize an AAC made with fly ash, steel slag, sodium silicate and sodium hydroxide. For this purpose, an experimental plan contemplating 26 mixtures was developed, which included compression and flexural strength tests. The experimental data was then analyzed using regression analysis and ANOVA. The results indicate that the sodium hydroxide/sodium silicate solution ratio is the most relevant variable, followed by the ratio between the two solid components (slag and fly ash).