Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vihinen, Jorma

  • Google
  • 8
  • 34
  • 58

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023High-speed laser cladding of chromium carbide reinforced Ni-based coatings10citations
  • 2023Sliding wear behavior of Cold Metal Transfer cladded Stellite 12 hardfacings on martensitic stainless steel9citations
  • 2022Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts5citations
  • 2019Three-dimensional printing of zirconia: characterization of early stage material properties17citations
  • 2019Three-dimensional printing of zirconia: characterization of early stage material properties17citations
  • 2018Industrialization of hybrid and additive manufacturing - Implementation to Finnish industry (HYBRAM)citations
  • 2014Surface Processing of Zirconia Ceramics by Lasercitations
  • 2014High-speed Sliding Friction of Laser-textured Silicon Nitride in Water against Rubbercitations

Places of action

Chart of shared publication
Kiviö, Jouko
1 / 1 shared
Tuominen, Jari
2 / 11 shared
Balusson, Clara
1 / 1 shared
Raami, Lassi
1 / 5 shared
Peura, Pasi
1 / 56 shared
Tapiola, Jaakko
1 / 2 shared
Vuoristo, Petri
1 / 75 shared
Ali-Löytty, Harri
1 / 44 shared
Parihar, Vijay Singh
1 / 6 shared
Yiannacou, Kyriacos
1 / 6 shared
Kellomäki, Minna
1 / 31 shared
Ukale, Dattatraya
1 / 1 shared
Lahtonen, Kimmo
1 / 38 shared
Sariola, Veikko
1 / 6 shared
Sharma, Vipul
1 / 5 shared
Suominen, Jussi M.
2 / 2 shared
Vallittu, Pekka
2 / 5 shared
Frankberg, Erkka
2 / 9 shared
Vastamäki, Teemu
2 / 7 shared
Kari, Risto
2 / 2 shared
Lassila, Lippo V. J.
2 / 10 shared
Levänen, Raimo Erkki
3 / 37 shared
Levänen, Erkki
1 / 20 shared
Puukko, Pasi
1 / 10 shared
Coatanea, Eric
1 / 6 shared
Kujanpää, Veli
1 / 43 shared
Komi, Erin
1 / 3 shared
Kilpeläinen, Pekka
1 / 1 shared
Riipinen, Tuomas
1 / 20 shared
Savolainen, Mikko
1 / 2 shared
Mokhtarian, Hossein
1 / 12 shared
Ismailov, Arnold
2 / 22 shared
Hyvärinen, L.
1 / 3 shared
Kumpulainen, T.
2 / 5 shared
Chart of publication period
2023
2022
2019
2018
2014

Co-Authors (by relevance)

  • Kiviö, Jouko
  • Tuominen, Jari
  • Balusson, Clara
  • Raami, Lassi
  • Peura, Pasi
  • Tapiola, Jaakko
  • Vuoristo, Petri
  • Ali-Löytty, Harri
  • Parihar, Vijay Singh
  • Yiannacou, Kyriacos
  • Kellomäki, Minna
  • Ukale, Dattatraya
  • Lahtonen, Kimmo
  • Sariola, Veikko
  • Sharma, Vipul
  • Suominen, Jussi M.
  • Vallittu, Pekka
  • Frankberg, Erkka
  • Vastamäki, Teemu
  • Kari, Risto
  • Lassila, Lippo V. J.
  • Levänen, Raimo Erkki
  • Levänen, Erkki
  • Puukko, Pasi
  • Coatanea, Eric
  • Kujanpää, Veli
  • Komi, Erin
  • Kilpeläinen, Pekka
  • Riipinen, Tuomas
  • Savolainen, Mikko
  • Mokhtarian, Hossein
  • Ismailov, Arnold
  • Hyvärinen, L.
  • Kumpulainen, T.
OrganizationsLocationPeople

document

Surface Processing of Zirconia Ceramics by Laser

  • Ismailov, Arnold
  • Hyvärinen, L.
  • Kumpulainen, T.
  • Levänen, Raimo Erkki
  • Vihinen, Jorma
Abstract

The aim of this study was to investigate phase transformations and glazing of zirconia bulk ceramic as a function of laser processing parameters. Zirconia-based ceramics have good material properties for a variety of applications. The main advantage of zirconia compared to other structural ceramics, like silicon-based ceramics and alumina, is its high fracture toughness (typically over 10MPa√m). This property is largely based on partial stabilization of zirconia, where a portion of the material is in metastable phase, enabling instantaneous phase transformation under mechanical load. This consumes energy otherwise provided to crack propagation. The stable phase of zirconia to exist in room temperature is monoclinic; therefore a rapid cycle of heating and cooling is necessary for achieving metastable tetragonal phase. Pulsed laser processing offers just the right type of thermal cycle for the aforementioned phase transformation to occur. In this study a nanosecond pulsed laser was used for surface processing of zirconia ceramic blocks.<br/> During laser processing high energy can be concentrated into small area, causing sudden local heating, which in turn causes material to melt and vaporize instantly. However, heat dissipation remains small due to the short pulse length, leading to the desirable cycle. Temperatures in the process correlate with several parameters: pulse width, peak energy, repetition rate, pulse overlap, material properties and wavelength.Zirconia is a tough material to process in terms of material removal with laser ablation, since it tends to melt rather than evaporate.<br/>

Topics
  • impedance spectroscopy
  • surface
  • melt
  • crack
  • Silicon
  • ceramic
  • fracture toughness
  • laser ablation
  • metastable phase