People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gavrus, Adinel
Institut National des Sciences Appliquées de Rennes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Contribution to the formability improvement in sheet metal stamping by a novel technique to control press kinetics
- 2022An Energy Approach Applied to Define Elasto-Plastic Constitutive Models Describing Thermomechanical Metallic Materials Behavior During Forming Processes
- 2020New phenomenological material constitutive models for the description of the Ti6Al4V titanium alloy behavior under static and dynamic loadingscitations
- 2020Elaboration and Mechanical-Electrochemical Characterisation of Open Cell Antimonial-lead Foams Made by the “Excess Salt Replication Method” for Eventual Applications in Lead-acid Batteries Manufacturingcitations
- 2019Some aspects regarding the influence of the anisotropy of an AA2021-T351 rolled thick plate on its tribological behaviourcitations
- 2017Analysis of anisotropic model and the effect of friction coefficient in a stretch forming process applied to AA2024 thin sheet
- 2017Finite element method coupled with a numerical cellular automaton model to simulate the residual stress of dual phase DP600 steel Nd:YAG laser welding
- 2017Some aspects regarding the influence of the anisotropy of an AA2021-T351 rolled thick plate on its tribological behaviour
- 2016Modeling grain orientation of DP600 steel by Nd:YAG lasercitations
- 2015Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foamscitations
- 2013A two-step inverse analysis approach used to identify the mechanical properties of metallic materials subjected to large plastic strains. Applications to local investigations of surface layer’s behaviour
- 2012Constitutive equation for description of metallic materials behavior during static and dynamic loadings taking into account important gradients of plastic deformationcitations
- 2012Cold rolling of a zirconium alloy: texture effects and modelling
- 2012Analysis of the anisotropic behavior and of the formability aptitude for an AA2024 alloy using the channel die compression test and the simple tension testcitations
- 2011An Anisotropic Behaviour Analysis of AA2024 Aluminium Alloy Undergoing Large Plastic Deformationscitations
- 2010A rheological analysis of solid polymers using an inverse method applied to a finite element model of the torsion and tensile tests
Places of action
Organizations | Location | People |
---|
article
A rheological analysis of solid polymers using an inverse method applied to a finite element model of the torsion and tensile tests
Abstract
The torsion and traction mechanical tests are generally used in order to analyses the rheology of solid polymers. This paper deals with an identification of the rheological constitutive equation for a polycarbonate and a polyethylene material. To take into account strain localization, caused by increasing values of the plastic strain and of the temperature gradients, a finite element simulation of the experimental tests is used. Then, the values of the constitutive parameters are computed from an Inverse Analysis method. Accuracy of the material behavior identification results obtained by the Inverse Finite Element Method will be demonstrated.