Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Insardi, Séverine Girard-

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Assessment of agglomerated ceramic powders under impact by cold sprayingcitations

Places of action

Chart of shared publication
Celeste, Geoffrey
1 / 3 shared
Kermouche, Guillaume
1 / 48 shared
Missoum-Benziane, Djamel
1 / 8 shared
Sao-Joao, Sergio
1 / 11 shared
Guipont, Vincent
1 / 29 shared
Chatelain, Dylan
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Celeste, Geoffrey
  • Kermouche, Guillaume
  • Missoum-Benziane, Djamel
  • Sao-Joao, Sergio
  • Guipont, Vincent
  • Chatelain, Dylan
OrganizationsLocationPeople

document

Assessment of agglomerated ceramic powders under impact by cold spraying

  • Celeste, Geoffrey
  • Kermouche, Guillaume
  • Missoum-Benziane, Djamel
  • Sao-Joao, Sergio
  • Guipont, Vincent
  • Insardi, Séverine Girard-
  • Chatelain, Dylan
Abstract

Most of ductile metals can be deposited by cold spray (CS). For brittle ceramic, such solid-state deposition process is still questionable, but some recent work on Ti02 or hydroxyapatite powders have shown that micrometric ceramic powder could be deposited by CS. In this work, it is claimed that the nature and the porous architecture of a ceramic powder with agglomerated ultra-fine grains play an important role on the impact behaviour. The aim of this work is to investigate the deformation behaviour of ceramic agglomerated powders under high velocity impact. Two different powders, respectively 3YSZ and Y2O3, were selected in order to study their architectures (particle size, porosity, density, crystallite size, etc.). Cold spray "splats" experiments, with various spraying distances to vary the particles velocities upon impact, were carried out to observe the deformation and fragmentation. In case of Y2O3, cold spray with dynamic vacuum surrounding atmosphere up to 3kPa were also prepared to evaluate the role of the atmosphere on the resulting impact. In parallel, in situ SEM micro-compression tests at 10 −2 s −1 on cross-sectioned 3YSZ particles involving flat-punch nano-indentation and micropillar compression were performed. By modelling the compression tests, the aim is to identify a Drücker-Prager behaviour law suitable for an agglomerated ceramic powder under quasi-static compression. Such deformation behaviour could help to better understand the compaction behaviour of agglomerated powders.

Topics
  • Deposition
  • porous
  • density
  • impedance spectroscopy
  • grain
  • scanning electron microscopy
  • experiment
  • compression test
  • porosity
  • ceramic