Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Revuelta, Alejandro

  • Google
  • 17
  • 44
  • 351

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature water8citations
  • 2024Process monitoring by deep neural networks in directed energy deposition : CNN-based detection, segmentation, and statistical analysis of melt pools23citations
  • 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturing5citations
  • 2024Process monitoring by deep neural networks in directed energy deposition23citations
  • 2024Process monitoring by deep neural networks in directed energy deposition:CNN-based detection, segmentation, and statistical analysis of melt pools23citations
  • 2023SCC behaviour of laser powder bed fused 316L stainless steel in high-temperature water at 288 °C15citations
  • 2022AM NPP - High temperature solution annealing of AM 316Lcitations
  • 2021Additive manufacturing in nuclear power plants (AM-NPP)citations
  • 2021Method for embedding components during additive manufacturing of metal partscitations
  • 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing158citations
  • 2018Design and Verification of a Wireless Readout System for Integrated Motor Axle Condition Monitoring2citations
  • 2017Soft magnetic alloys for selective laser meltingcitations
  • 2017Feasibility of selective laser melting process in manufacturing of digital spare partscitations
  • 2016Manufacturing of topology optimized soft magnetic core through 3D printingcitations
  • 2016Optimization and simulation of SLM process for high density H13 tool steel parts88citations
  • 2007High velocity forming of magnesium and titanium sheets6citations
  • 2007Comparison of two commercial FE-codes for sheet metal formingcitations

Places of action

Chart of shared publication
Ikäläinen, Tiina
1 / 5 shared
Que, Zaiqing
4 / 39 shared
Goel, Sneha
2 / 17 shared
Sipilä, Konsta
2 / 20 shared
Riipinen, Tuomas
8 / 20 shared
Toivonen, Aki
2 / 60 shared
Saario, Timo
2 / 62 shared
Ferreirós, Pedro A.
1 / 16 shared
Aihkisalo, Tommi
3 / 3 shared
Ituarte, Iñigo Flores
3 / 13 shared
Wiikinkoski, Olli
3 / 3 shared
Asadi, Reza
3 / 4 shared
Queguineur, Antoine
3 / 11 shared
Mokhtarian, Hossein
3 / 12 shared
Reijonen, Joni
4 / 14 shared
Metsä-Kortelainen, Sini
4 / 19 shared
Salminen, Antti
1 / 44 shared
Forsström, Antti
1 / 9 shared
Kretzschmar, Niklas
1 / 11 shared
Korpela, Markus
1 / 2 shared
Jayaprakash, Siddharth
1 / 7 shared
Salmi, Mika
1 / 28 shared
Vaajoki, Antti
2 / 16 shared
Siren, Mika
1 / 1 shared
Pinomaa, Tuomas
1 / 1 shared
Puukko, Pasi
3 / 10 shared
Ruusuvuori, Kimmo
4 / 8 shared
Sillanpää, Teuvo
1 / 7 shared
Mccaffrey, Colm
1 / 3 shared
Halme, Jari
1 / 5 shared
Pippuri, Jenni
2 / 2 shared
Lindroos, Tomi
3 / 55 shared
Metsäjoki, Jarkko
1 / 33 shared
Lagerbom, Juha
1 / 66 shared
Jokinen, Antero
2 / 5 shared
Pasanen, Antti
1 / 11 shared
Savolainen, Mikko
1 / 2 shared
Andersson, Tom
1 / 51 shared
Laukkanen, Anssi
1 / 144 shared
Laakso, Petri
1 / 14 shared
Larkiola, Jari
2 / 10 shared
Kanervo, K.
2 / 2 shared
Korhonen, A. S.
2 / 2 shared
Myllykoski, P.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2018
2017
2016
2007

Co-Authors (by relevance)

  • Ikäläinen, Tiina
  • Que, Zaiqing
  • Goel, Sneha
  • Sipilä, Konsta
  • Riipinen, Tuomas
  • Toivonen, Aki
  • Saario, Timo
  • Ferreirós, Pedro A.
  • Aihkisalo, Tommi
  • Ituarte, Iñigo Flores
  • Wiikinkoski, Olli
  • Asadi, Reza
  • Queguineur, Antoine
  • Mokhtarian, Hossein
  • Reijonen, Joni
  • Metsä-Kortelainen, Sini
  • Salminen, Antti
  • Forsström, Antti
  • Kretzschmar, Niklas
  • Korpela, Markus
  • Jayaprakash, Siddharth
  • Salmi, Mika
  • Vaajoki, Antti
  • Siren, Mika
  • Pinomaa, Tuomas
  • Puukko, Pasi
  • Ruusuvuori, Kimmo
  • Sillanpää, Teuvo
  • Mccaffrey, Colm
  • Halme, Jari
  • Pippuri, Jenni
  • Lindroos, Tomi
  • Metsäjoki, Jarkko
  • Lagerbom, Juha
  • Jokinen, Antero
  • Pasanen, Antti
  • Savolainen, Mikko
  • Andersson, Tom
  • Laukkanen, Anssi
  • Laakso, Petri
  • Larkiola, Jari
  • Kanervo, K.
  • Korhonen, A. S.
  • Myllykoski, P.
OrganizationsLocationPeople

report

AM NPP - High temperature solution annealing of AM 316L

  • Revuelta, Alejandro
  • Que, Zaiqing
  • Riipinen, Tuomas
  • Forsström, Antti
Abstract

The effect of different solution annealing (SA) treatments on the material properties of L-PBF produced 316L specimens was investigated. Hot Isostatic Pressing (HIP) is often the heat treatment of choice for L-PBF 316L as it results in good mechanical properties and isotropic microstructure, whereas the standard solution annealing cycle at 1066°C is not sufficient at homogenizing the material structure and properties. High temperature annealing was considered as an alternative for the more expensive HIP process, and according to published research, the higher annealing temperatures produce properties more close to conventionally manufactured alloy. Cylindrical and rectangular bars were printed using L-PBF and the three different thermal post processes were applied: 1066°C/1h, 11150°C/1h and 1200°C/1h. All parts were heat treated in a vacuum furnace and stress relieved (650°C/2h) prior to solution annealing. The 1066°C annealing complies with the current 316L AM standard. After machining, characterization of mechanical properties was done by static tensile tests and Charpy-V impact tests. Samples were prepared for microstructure (SEM/EBSD) and chemical analysis. The printed test specimen had very low porosity and a chemical composition comparable to the feedstock powder with no excess oxidation. The microstructure evolved from partially recrystallized and anisotropic at 1066°C to nearly fully recrystallized at 1200°C. The tensile properties decreased with increasing annealing temperature and fulfilled the minimum requirements specified in AM standard (Re ≥ 205 MPa, Rm ≥ 515 MPa, A ≥ 30 %) in all conditions. The impact energies followed the same trend and for the 1200°C condition the average impact energy was below 40 J, which is the minimum requirement in standards SFS-EN 13480, SFS-EN 13445 that are relevant for materials used in nuclear applications.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • anisotropic
  • selective laser melting
  • chemical composition
  • impact test
  • annealing
  • electron backscatter diffraction
  • isotropic
  • porosity
  • hot isostatic pressing