People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Loukas, Charalampos
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Flexible and automated robotic multi-pass arc welding
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Driving towards flexible and automated robotic multi-pass arc welding
- 2022Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Automated multi-modal in-process non-destructive evaluation of wire + arc additive manufacturing
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2021A cost-function driven adaptive welding framework for multi-pass robotic weldingcitations
Places of action
Organizations | Location | People |
---|
document
Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
Abstract
Ultrasonic and eddy current testing are two of the most common inspection modalities, with many benefits being derived from leveraging their respective advantages. Ultrasonic Feature Guided Waves (FGWs) that have their energy confined to a topological feature within a component’s geometry have been shown to exist and can provide screening of key structural features such as welds. Furthermore, it is common to use a localised NDT modality in combination with guided wave testing when attempting defect characterisation.<br/>To realise the benefits of using multiple inspection modalities, the authors present the use of a robotic system to flag defective regions within resistance seam welded (RSW) components via an ultrasonic FGW. Subsequently, targeted raster scans are performed using an eddy current array on the identified defective regions.A robotic arm deployed the eddy current array and both ultrasonic and eddy current data was gathered automatically in the LabVIEW software environment. RSW plates with EDM notches representing transversal cracks of ≥1mm depth were manufactured. By performing targeted and untargeted raster scans on these samples, the time taken to perform the overall NDT procedure was decreased by >5 times providing screening and defect characterisation of a component in a time and cost-effective manner.<br/>