People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Laure, Patrice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 20233D real time and in situ observation of the fibre orientation during the plane strain flow of concentrated fibre suspensionscitations
- 2022Cellularization modeling of a rubber compound in injection molding conditions
- 2022Cellularization modeling of a rubber compound in injection molding conditions
- 2022Foamability of linear and branched polypropylenes by physical extrusion foaming - Input of the thermomechanical analysis of pressure drop in the die
- 2022Extrusion foaming of linear and branched polypropylenes - Input of the thermomechanical analysis of pressure drop in the die
- 2022Analysis and Modelling of Extrusion Foaming Behaviour of Polyolefins using Isobutane and CO2
- 2021Analysis and Modelling of Extrusion Foaming Behaviour of Low-Density Polyethylene using Isobutane and CO2
- 2021Short fiber composite reinforcementscitations
- 2021Microscale modelling of the cellularization of a rubber compound in injection moulding conditions
- 2019Fibre kinematics in dilute non-Newtonian fibre suspensions during confined and lubricated squeeze flow: direct numerical simulation and analytical modellingcitations
- 2016On the Numerical Modeling of Fiber-reinforced Composites:Towards Industrial Applications
- 2016On the Numerical Modeling of Fiber-reinforced Composites:Towards Industrial Applications
- 2016Multiphysics for simulation of forming processes
- 20163D real-time and in situ characterisation of fibre kinematics in dilute non-Newtonian fibre suspensions during confined and lubricated compression flowcitations
- 2015Direct Numerical Simulation of a rheology model for fibre-reinforced composites
- 2015Direct Numerical Simulation of a rheology model for fibre-reinforced composites
- 2015Numerical Modelling of Molding Compression Of Fibre-Reinforced Composites for Industrial applications
- 2015Numerical Modelling of Molding Compression Of Fibre-Reinforced Composites for Industrial applications
- 2015Numerical Implementation of a Rheology Model for Fiber-Reinforced Composite and Viscous Layer Approach for Friction Studycitations
- 2012A new three-dimensional mixed finite element for direct numerical simulation of compressible viscoelastic flows with moving free surfacescitations
- 2007Injection molding simulation : Taking into account the process history to predict the anisotropy in the end-use propertiescitations
- 2005Simulations numériques d'écoulements de fluides complexes à l'échelle microscopique : un nouvel outil de rhéologie
- 2004Direct Calculation of the motion of rigid fibres in a viscous fluidcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Cellularization modeling of a rubber compound in injection molding conditions
Abstract
The objective of this work is to develop a numerical model allowing to predict the foaming process of a rubber matrix in injection molding conditions. This is achieved in two parts. The first one is a microscale model that describes the growth of a bubble, based on Amon and Denson’s work [1], according to whom the foam is divided into identical cells consisting in a bubble enveloped by a spherical fluid shell that contains a limited supply of gas generated by a chemical reaction. As the dissolved gas diffuses towards the bubble, the pressure increases, inducing its growth. The model comprises a set of equations describing the evolution of the bubble radius, its pressure, and the concentration gradient inside the shell. Boundary conditions and physical parameters of the rubber-gas system must be found. The rubber undergoes vulcanization during the molding step, so the viscosity increase due to crosslinking was implemented by means of an empirical model. The state of cure evolution was predicted using Kamal-Sourour’s autocatalytic kinetic model [2]. In addition, the coupling of this reaction with the kinetics of the chemical blowing agent’s thermal decomposition is also considered [3].The second part will consist in coupling the microscale model with a macroscale simulation of the injection molding process, including the polymer flow into the cavity during the filling step and the evolution of its temperature throughout the molding stage.The bubble growth kinetics will be described and discussed in view of the gas concentration evolution and the vulcanization kinetics. A parametric study will be conducted to determine first order parameters of the bubble growth process. Predictions of the bubble growth model (bubble size and foam density evolution) will be compared with experimental injection molding data (foam density and bubble size distribution) to validate the model.Acknowledgements. This work was performed within the framework of the chair DEEP, between Hutchinson, ESPCI and MINES Paris - PSL. Hutchinson SA is acknowledged for its financial and technical support. This work is also supported by the French Minister of Research (ANRT).References. 1.M. Amon and D. Denson, Polym. Eng. Sci. 24 (1984),1026 2. M. R. Kamal. Polym. Eng. Sci. 14 (1974), 231 3.N. Alcalá et al. Polymers. 14 (2022), 1101