People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moigne, Nicolas Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Sorption of water and ethanol pure vapours and vapour mixtures by four hardwoodscitations
- 2023Flax Shives As Fillers For Injection Molded Bio-Based Composites
- 2023Effect Of Processing On Particle Dispersion And Rheological Behaviour Of Cnc Reinforced Polyvinyl Alcohol Nanocomposites
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2023Tracking the changes into mechanical properties and ultrastructure of flax cell walls during a dynamic heating treatment
- 2023Advances in the Production of Cellulose Nanomaterials and Their Use in Engineering (Bio)Plasticscitations
- 2023In-Situ Monitoring Of The Ultrastructure And Mechanical Properties Of Flax Cell Walls During Controlled Heat Treatment
- 2022Agrobranche Project: Towards sustainable wood fillers from agroforestry for WPC
- 2022Revealing the potential of Guianese waste fibers from timber production and clearings for the development of local and bio-based insulation fiberboards.
- 2022Développement et fonctionnalisation d’anas de lin pour l’élaboration de biocomposites thermoplastiques injectables
- 2021Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystalscitations
- 2021Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysiscitations
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021Swelling and Softening Behaviour of Natural Fibre Bundles under Hygro- and Hydrothermal Conditions
- 2021Towards Sustainable Wood Fillers from Agroforestry for Wood-Plastic Composites : Effect of Filler Size and Wood Species
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2020Fonctionnalisation d’un tissu de lin industriel par adsorption de polysaccharides: effets sur les propriétés physiques des fibres de lin et des biocomposites lin/epoxy
- 2020Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristicscitations
- 2018Dimensional variations and mechanical behaviour of natural fibres from various plant species in controlled hygro/hydrothermal conditions
- 2018Dry fractionation of olive pomace for the development of food packaging biocompositescitations
- 2017Low velocity impact damage assessment in natural fibre biocomposites
- 2016EXPERIMENTAL CHARACTERISATION OF THE IMPACT RESISTANCE OF FLAX FIBRE REINFORCED COMPOSITE LAMINATES
- 2015Influence of flax cell wall components on the interfacial behavior of flax woven fabric/epoxy biocomposites
- 2015Influence of the flax fibre chemical composition on mechanical properties of epoxy biocomposite
Places of action
Organizations | Location | People |
---|
document
PLA-based biocomposites foaming by supercritical CO2 assisted batch process
Abstract
In many industrial fields, the development of porous and light polymer composite structure is of great interest. These structures may have several advantages compared to a massive solid of the same chemical nature, such as better mechanical properties, cushioning, insulation, sound and heat absorption. As an example, foams are used in the sport, pharmaceutical, aeronautic and packaging industries. For these applications, petroleum based thermoplastics are widely used as polymer matrix, but, due to the shortage of fossil resources and the rise of environmental concerns, biopolymers (bio-based, bio-degradable and/or bio-compatible polymer) are more and more used.There are two main routes to produce biopolymer foams depending on the blowing agent used, which can be either chemical (CBA) or physical (PBA). CBA are able to release a gas upon thermal decomposition, but they have some drawbacks, among which the necessity of high process temperatures, the solid residues on the foam and their toxicity. PBA appear as an alternative to these chemical agents, supercritical CO2 and N2 being the most used.Batch foaming of polymers is a process which can be carried out in an autoclave. The samples are saturated in a pressure vessel a certain time, and their foaming is achieved by inducing an instability into the system. Pressurised gas solubility in polymers increases with pressure but decreases with temperature. Therefore, in the batch foaming process, the instability can be induced by a sudden drop in pressure (pressure quenching) or by a raise in temperature thus causing polymer foaming.This foaming technology has been largely used for different polymers such as polystyrene [2], polycaprolactone [3], polyethylene/polypropylene [4] and, polyethylene terephthalate [5]; among others. This work is focused on the foaming of PLA-based biocomposites using (ligno-)cellulosic fibres by supercritical CO2 assisted batch process by pressure quenching, the study of the operating conditions, the influence of the nature of the fibres and their characteristics on the porosity and morphology of the obtained foams.