Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Campbell, Andrew John

  • Google
  • 3
  • 10
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentation8citations
  • 2022X-ray classification of Special Nuclear Materials using image segmentation and feature descriptorscitations
  • 2017Automated microstructural analysis of titanium alloys using digital image processing7citations

Places of action

Chart of shared publication
Yakushina, Evgenia
2 / 18 shared
Murray, Paul
3 / 11 shared
Fotos, G.
1 / 1 shared
Cockbain, Neil
1 / 1 shared
Myres, Gareth
1 / 1 shared
Marshall, Stephen
2 / 12 shared
Zabalza, Jaime
1 / 3 shared
Bernard, Robert
1 / 5 shared
Offin, Douglas
1 / 2 shared
Ion, William
1 / 14 shared
Chart of publication period
2023
2022
2017

Co-Authors (by relevance)

  • Yakushina, Evgenia
  • Murray, Paul
  • Fotos, G.
  • Cockbain, Neil
  • Myres, Gareth
  • Marshall, Stephen
  • Zabalza, Jaime
  • Bernard, Robert
  • Offin, Douglas
  • Ion, William
OrganizationsLocationPeople

document

X-ray classification of Special Nuclear Materials using image segmentation and feature descriptors

  • Cockbain, Neil
  • Myres, Gareth
  • Campbell, Andrew John
  • Marshall, Stephen
  • Zabalza, Jaime
  • Bernard, Robert
  • Murray, Paul
  • Offin, Douglas
Abstract

Reliable inspection techniques are crucial for the safe storage and transport of nuclear materials. Among the factors to be considered is the morphology of Special Nuclear Materials, typically stored in packages of multiple layered cannisters. X-ray radiography allows visual inspection of the material inside, without risking exposure. However, some morphologies of material have visual similarities which risks errors being made when determining package contents from radiographs. Image processing techniques can automate the classification of radiographs in a deterministic way, thus providing a valuable inspection aid to nuclear storage facilities. In this paper, segmentation methods are proposed to identify the nuclear materials inside the package, and feature extraction methods are designed that derive multiple descriptors of the shape and morphology of the segmented material. Machine learning is then used to train a model that uses only the extracted feature descriptors to classify radiographs into 3 different morphologies; powder, pellets and clinker. This technique is tested on 138 X-ray images and initial results are very promising.

Topics
  • impedance spectroscopy
  • extraction
  • layered
  • machine learning