Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Genée, Julien Genee

  • Google
  • 4
  • 7
  • 18

Institut Mines-Télécom

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Experimental and numerical investigation of key microstructural features influencing the localization of plastic deformation in Fe-TiB2 metal matrix composite8citations
  • 2020Particle interspacing effects on the mechanical behavior of a Fe–TiB2 metal matrix composite using FFT-based mesoscopic field dislocation mechanics10citations
  • 2019Modélisation et simulation numérique par méthode FFT de la localisation des contraintes internes et des densités de dislocations dans un acier composite nouvelle génération 'Fe-TiB2'citations
  • 2017Statistical and Numerical Study of Slip Bands-Grain Boundaries Interactions : Case of Nickel Based Superalloyscitations

Places of action

Chart of shared publication
Lebensohn, R., A.
2 / 2 shared
Gey, Nathalie
1 / 47 shared
Berbenni, Stephane
2 / 6 shared
Bonnet, F.
3 / 10 shared
Gey, N.
2 / 5 shared
Guyon, J.
1 / 9 shared
Berbenni, S.
1 / 4 shared
Chart of publication period
2021
2020
2019
2017

Co-Authors (by relevance)

  • Lebensohn, R., A.
  • Gey, Nathalie
  • Berbenni, Stephane
  • Bonnet, F.
  • Gey, N.
  • Guyon, J.
  • Berbenni, S.
OrganizationsLocationPeople

thesis

Statistical and Numerical Study of Slip Bands-Grain Boundaries Interactions : Case of Nickel Based Superalloys

  • Genée, Julien Genee
Abstract

This thesis research focused on interactions between slip bands – manifestation of plastic strain localization in polycrystalline metallic materials – and grain boundaries. The material chosen for the study is a nickel based superalloy (UdimetTM 720Li). Recent investigations have shown that slip bands blocked at grain boundaries can induce significant crystalline elastic rotation in highly localized regions – referred to as micro-volumes – in neighboring grains. This phenomenon is observed from room to intermediate temperatures (T < 500°C), under monotonic or cycling loading. It is responsible for the first stages of damage initiation and is at the origin of fatigue fatal cracks.A statistical analysis was carried out over a large data set of slip bands – grain boundaries interactions through SEM observations performed on pre-deformed samples. Local crystallographic configurations were investigated in order to identify those that favor or inhibit the formation of micro-volumes. A peculiar role of the twist angle - related to the alignment of slip systems on both sides of the grain boundary – was evidenced, particularly in the case of twin boundaries.Then, two strategies of numerical modeling of the interaction between a slip band and a neighboring grain using full-field finite element simulation were developed. In this work, the elastic regime only is considered and distributions of crystalline rotations, stresses and resolved shear stresses at the tip of theim pinging slip band in the neighboring grain were analyzed in order to better understand the conditions leading to the transmission of slip through the grain boundary and those leading to the termination of slip bands with or without formation of micro-volumes.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • nickel
  • grain boundary
  • scanning electron microscopy
  • simulation
  • crack
  • fatigue
  • superalloy