Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lefebvre, Xavier

  • Google
  • 3
  • 10
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023JET exhaust detritiation system replacement—design, commissioning, and operation4citations
  • 2009Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment - Impact of time of exposure on the extent of damagecitations
  • 2006Use of EIS for the monitoring and modelling of multi-layer anticorrosion coatingscitations

Places of action

Chart of shared publication
Kennedy, David
1 / 5 shared
George, Robert
1 / 1 shared
Morris, Ryan
1 / 1 shared
Ng, Simon
1 / 1 shared
Huddleston, Tim
1 / 1 shared
Vittal, Aarthee
1 / 1 shared
Garnier, Laurence
1 / 1 shared
Smanio, Veronique
1 / 2 shared
Kittel, Jean
2 / 59 shared
Sauvant-Moynot, Valérie
1 / 2 shared
Chart of publication period
2023
2009
2006

Co-Authors (by relevance)

  • Kennedy, David
  • George, Robert
  • Morris, Ryan
  • Ng, Simon
  • Huddleston, Tim
  • Vittal, Aarthee
  • Garnier, Laurence
  • Smanio, Veronique
  • Kittel, Jean
  • Sauvant-Moynot, Valérie
OrganizationsLocationPeople

conferencepaper

Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment - Impact of time of exposure on the extent of damage

  • Garnier, Laurence
  • Smanio, Veronique
  • Kittel, Jean
  • Lefebvre, Xavier
Abstract

The selection of materials for application in the oil and gas industry in environments containing hydrogen sulphide (H 2 S) is an important matter for the safety of equipments. In the presence of H 2 S, hydrogen atoms originating from the cathodic corrosion reaction can diffuse into the steel, resulting in cracking mechanisms such as hydrogen-induced cracking (HIC) or sulphide stress cracking (SSC). For the SSC cracking mode, a diagram defining different regions of environmental severity was established in the 1990's. The requirements for SSC testing of steels in a given environment are well defined and accepted by the industry. On the other hand, fit-for-purpose (FFP) testing for HIC remains a subject of debate. The most common practice consists in 96 hours exposure under 1 bar H 2 S. But this test environment is extremely severe, and is often considered to be too conservative for the selection of steels for use in mildly sour environments. However, a universally applicable FFP test method for HIC has not yet been established. In addition to pH and H 2 S partial pressure, test duration is another major parameter for HIC testing. Therefore, this experimental study was launched to investigate the impact of time of exposure on HIC. Experiments consisted of HIC exposure tests based on the NACE TM0284-2003 standard method. Experiments were conducted in different nodes of the pH-pH 2 S diagram respectively between pH 6.5 and 3.5, and between 10 mbar and 1 bar of H 2 S. For each condition, tests with different times of exposure were realised, from only a few hours and up to three months. Characterisation of HIC consisted in ultrasonic testing. Permeation experiments were also performed in selected pH-pH 2 S conditions. Permeation transients were analysed for calculation of diffusion coefficients. Modelling of hydrogen profiles in HIC specimens was then realised, and compared with the results of HIC immersion tests. For each test condition, it was possible to draw the evolution with time of the extent of HIC. Depending on the environment, the minimum duration necessary to initiate HIC was extremely variable, from a few hours in the most severe conditions to several weeks in low severity conditions. The extent of cracking at equilibrium also seemed to vary with pH and H 2 S. A good correlation was found between HIC and permeation results, confirming that HIC is strongly linked with the increase of hydrogen concentration in the steel. These results confirm that low severity conditions require longer exposures to reach equilibrium levels of internal hydrogen. This must be taken into account for FFP HIC testing in mildly sour environment. With that aim, permeation experiments could represent an interesting technique to assess the time to reach a certain level of hydrogen in the material.

Topics
  • impedance spectroscopy
  • corrosion
  • experiment
  • steel
  • Hydrogen
  • ultrasonic