People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarma, Munmi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Improved Sensing of Capsaicin with TiO2 Nanoparticles Modified Epoxy Graphite Electrode
Abstract
<p>The presented research focuses on the electrochemical determination of capsaicin, a lipophilic alkaloid which originates hotness in chili peppers. An electrochemical sensor based on epoxy-graphite composite with the modification of titanium dioxide (TiO<sub>2</sub>) nanoparticles is developed for the determination of this alkaloid. The measurements were carried out in glycine buffer at pH 2.5 using cyclic voltammetry. Two linear concentration ranges were obtained from 6 to 75 μM (R=0.99) and from 12 to 138 μM, with a detection limit of 5.34 μM and 11.3 μM capsaicin, for 1<sup>st</sup> and 2<sup>nd</sup> oxidation peak, respectively. The main advantage of developed sensor is its repeatability and robustness against fouling; the relative standard deviation (RSD) value was 2.53 % (n=10). This voltammetric sensing procedure has successfully been applied to quantify capsaicin in various real samples such as hot chili sauce and pharmaceutical preparations.</p>